КАСКАДНАЯ КОТЕЛЬНАЯ, ПОСОБИЕ ПО ПРОЕКТИРОВАНИЮ

1. ОБЩИЕ ХАРАКТЕРИСТИКИ

Ассортимент теплогенераторов серии «High Power» представлен моделями 50, 60, 75, 100, 115 и 120, все они выполнены в исполнении Radiant с теплообменником из нержавеющей стали диаметром 28 мм, чтобы удовлетворить потребности в увеличении мощности в чрезвычайно маленькое пространство. Генераторы также предназначены для одиночной или каскадной работы, независимо друг от друга.

R1K 50-60 — это теплогенератор, состоящий из теплообменника, а R1K 75, R1K 100, R1K 115 и R1K 120 — это теплогенераторы, состоящие из 2 теплообменников Combi-tech®, все на 100% изготовлены в Radiant из нержавеющей стали, с спираль однотрубная Ø 28 мм, в одном комплекте. Модульная система предлагает большую гибкость для установки в централизованных системах, а также бесчисленные преимущества с точки зрения производительности, такие как модуляция до 1:20 одного модуля, возможность исключения генератора и в случае неисправности генератора. , возможность никогда не покидать систему остановилась при запуске только одного генератора. Radiant поставляет широкий диапазон мощностей от 50 до 500 кВт (более 500 кВт обращайтесь в технический офис), уже сконфигурированных для удовлетворения всех потребностей.

Состав модульного генератора предусматривает свободное сочетание отдельных генераторов в сочетании с гидравлическими коллекторами, выполняющими функцию сбора притока и обратки системы и газа.

Система также предоставляет возможность:

- в версии RS через специальную систему перенаправления потока на БОЙЛЕР КОСВЕННОГО НАГРЕВА.
- монтаж системы вплотную друг к другу в версии ScS с установкой генераторов в противоположных положениях, чтобы облегчить установку модульного генератора там, где поточное решение из-за недостатка места невозможно.

2. ТИП ПРОДУКТА

Использование серии SISTEMA при каскадной установке может предложить идеальное решение по производительности в соответствии с различными потребностями.

Генераторы фактически предназначены для работы в каскаде максимум до 8 котлов общей мощностью 944 кВт, что обеспечивает непрерывную линейную модуляцию мощности в пределах очень низкого процента минимальной мощности (в зависимости от типа используемых тепловых модулей и типа максимальная мощность системы) и 100% установленной мощности. Версии, обозначенные RS, комплектуются системой дистанционного питания котла.

НИЖЕ НЕКОТОРЫЕ СОСТАВЫ СИСТЕМЫ

Одиночный генератор	R1K 50	R1K 60	R1K 75	R1K100	R1K 115	R1K 120	ТЕПЛОВАЯ МОЩНОСТЬ [кВт]		СТЬ [кВт]
Тепловой поток	50 кВт	59 кВт	75 кВт	100 кВт	114 кВт	118 кВт	Обогрев		СКУД
							Мин.	Макс.	Макс.
Модель							IVIVIII.	Wake.	Wakt.
СИСТЕМА 150	1			1			5	150	-
СИСТЕМА 150 РС	1			1			5	150	100
СИСТЕМА 175			1	1			3.7	175	-
СИСТЕМА 175 РС			1	1			3.7	175	100
СИСТЕМА 200				2			5	200	-
СИСТЕМА 200 РС				2			5	200	100
СИСТЕМА 250						2	6	236	-
СИСТЕМА 250 РС						2	6	236	118
СИСТЕМА 275			1	2			3.7	275	-
СИСТЕМА 275 РС			1	2			3.7	275	100
СИСТЕМА 300				3			5	300	-
СИСТЕМА 300 РС				3			5	300	100
СИСТЕМА 350					3		6	342	-
СИСТЕМА 350 РС					3		6	342	114
СИСТЕМА 375			1	3			3.7	375	-
СИСТЕМА 375 РС			1	3			3.7	375	100
СИСТЕМА 400				4			5	400	-
СИСТЕМА 400 РС				4			5	400	100
СИСТЕМА 450	1				4		6	456	-
СИСТЕМА 450 РС	1				4		6	456	114
СИСТЕМА 500				5			5	500	-
СИСТЕМА 500 РС				5			5	500	100
СИСТЕМА 600						5	6	590	-
СИСТЕМА 600 РС						5	6	590	118

NB. При обращении в Технический офис возможны комбинации до 8 тепловых модулей мощностью более 600 кВт и решения с установкой генераторов спина к спине.

3. ТЕХНИЧЕСКИЕ ДАННЫЕ

СИСТЕМА		150	175	200
Сертификация СЕ	нет	0476CQ0134	0476CQ0134	0476CQ0134
Категория газа		II _{2H3B/П}	II _{2H3B/П}	II _{2H3В/П}
Тип выхлопа	парень	B23-B23p-B33-B53-C13-C33-C43-C53-C63-C73- C83 C93 C13x-C33x-C43x-C53x-C63x-C83x-C93x		.63-C73- C83-
Состав	кВт	1xR1K50+1xR1K100	1xR1K75+1xR1K100	2xR1K100
Энергоэффективность 92/42/EEC	кол-во звезд	4	4	4
Максимальная номинальная тепловая мощность	кВт	150,0	175,0	200,0
Минимальная номинальная тепловая мощность	кВт	5	3.7	5
Полезная тепловая мощность - 80/60°C.	кВт	147,56	171,20	196,74
Минимальная полезная тепловая мощность – 80/60°C.	кВт	4,83	3.50	4,83
Полезная тепловая мощность - 50/30°C.	кВт	160,20	186,15	213,60
Минимальная полезная тепловая мощность - 50/30°C.	кВт	5.29	3,83	5.29
Полезная мощность при 30% Pm - возврат 30°	кВт	26.12	29.83	34,28
КПД при 100% Pn - 80/60°C	%	98,37	97.10	98,37
Средний выход Pn - 80/60°C	%	97,90	97.30	97,88
КПД при минимальной мощности - 80/60°C		96,51	94,60	96,51
КПД при 100% Pn - 50/30°C	%	106,80	105,80	106,80
КПД при минимальной мощности - 50/30°C		105,70	104,60	105,70
КПД при 30% Pm - возврат 47°C	%	102,80	99.10	102,80
КПД при 30% Pm - возврат 30°C	%	108,80	107,50	108,83
Данные о сжигании				
Эффективность сгорания (100% Pn)	%	97,9	97,70	97,9
Эффективность сгорания (минимум Pn)	%	98,0	98,0	98,0
Потери в дымоходе при работе горелки (100% Pn)	%	2.10	2.30	2.10
Потери в дымоходе при работающей горелке (Pn min)	%	2.0	2.0	2.0
Течь дымохода при выключенной горелке	%	0,02	0,02	0,02
Потери снаряда (100% Pn)	%	- 0,47	0,6	- 0,47
Потери снарядов (Pn мин)	%	1,49	3.4	1,49
Течь корпуса при выключенной горелке	%	0,03	0,03	0,03
Температура дымовых газов при номинальном расходе тепла	°C	66,4	66,4	66,4
Температура дымовых газов при минимальном подводе тепла	°C	56,8	56,8	56,8
Масса дымовых газов при номинальной тепловой мощности	г/с	66,83	77,85	89,28
Масса дымовых газов при минимальном расходе тепла	г/с	2.28	1,78	2.31
CO2 при номинальной тепловой мощности – G20	%	9,3-9,1	9,3-9,1	9,2-9,0
CO2 при минимальной тепловой мощности – G20	%	9,0-8,8	9,0-8,8	9,0-8,8
CO2 при номинальной тепловой мощности - G30	%	11,3-11,1	11.50-11.10	11,3-11,1
CO2 при минимальной тепловой мощности – G30	%	10,9-10,7	10.90-10.65	10,9-10,7
СО2 при номинальной тепловой мощности - G31	%	10,3-10,1	10.40-10.10	10,3-10,1
CO2 при минимальной тепловой мощности - G31	%	9,8-9,6	9.95-9.70	9,8-9,6
СО при номинальной тепловой мощности	ppm	68	68	68
СО при минимальном подводе тепла	ppm	1	1	1
СО при номинальной тепловой мощности (0 % О2) – взвешенный	ppm	9	9	9
класс NOx	сорт	6	6	6

СИСТЕМА		150	175	200
NOx	мг/кВтч	50	50	50
Отопительный контур				
Регулируемая температура нагрева	°C	30-80/25-45	30-80/25-45	30-80/25-45
Максимальная температура разогревающих упражнений	°C	80	80	80
Максимальное давление разогревающих упражнений	Кафе	5	5	5
Минимальное давление разогревающих упражнений	Кафе	0,3	0,3	0,3
Содержание воды только для отопления/RS	литры	40/46	47/53	51/57
Электрические характеристики				
Габаритные характеристики				
Длина	мм	1321	1581 г.	1581 г.
Глубина	ММ	524	524	524
Высота	ММ	1794 г.	1794 г.	1794 г.
Пустой вес	кг	220	272	273
Гидравлические соединения				
Отправлять	DN	65	65	65
Газ	DN	40	40	40
Возвращаться	DN	65	65	65
Слив конденсата	или	40	40	40
Дымовая арматура				
Максимальное доступное давление электровентилятора	Па	100(1)	76(1)	100(1)
Минимальное доступное давление электровентилятора	Па	30(1)	4(1)	30(1)
Электрические характеристики				
Источник питания	В/Гц	230/50	230/50	230/50
Установленная электрическая мощность	Вт	324	402	432
Потребляемая мощность циркулятора 100%	Вт	165	205	220
Электроэнергия при выключенном котле	Вт	10,5	14	14
Степень электроизоляции	ИП	X5D	X5D	X5D
Газоснабжение				
Номинальное давление питания - G20	мбар	20	20	20
Максимальное давление подачи - G20	мбар	25	25	25
Минимальное давление подачи – G20	мбар	15	15	15
Расход топлива - G20	мз/час	15.88	18.52	21:18
Номинальное давление питания - G30	мбар	30	30	30
Максимальное давление подачи - G30	мбар	35	35	35
Минимальное давление подачи - G30	мбар	20	20	20
Расход топлива - G30	кг/ч	11.82	13:79	15,76
Номинальное давление питания - G30	мбар	37	37	37
Максимальное давление подачи - G30	мбар	45	45	45
Минимальное давление подачи - G30	мбар	25	25	25
Расход топлива - G31	кг/ч	11.65	13:60	15:54

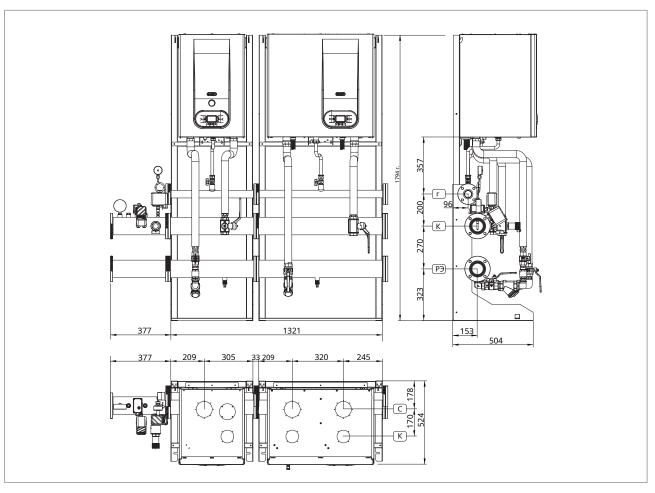
СИСТЕМА		250	275	300
Сертификация СЕ	нет	0476CQ0134	0476CQ0134	0476CQ0134
Категория газа		II _{2H3B/П}	II _{2H3B/П}	II _{2H3B/П}
Тип выхлопа	парень	B23-B23p-B33-B53	3-C13-C33-C43-C53-C 53x-C63x-C83x-C93x	63-C73-C83-C93
Состав	кВт	2xR1K120	1xP1K75+2xP1K100	3xR1K100
Энергоэффективность 92/42/ЕЕС	кол-во звезд	4	4	4
Максимальная номинальная тепловая мощность	кВт	236,0	275,0	300,0
Минимальная номинальная тепловая мощность	кВт	6.0	3,70	5.0
Полезная тепловая мощность - 80/60°С.	кВт	229,28	269,57	295.11
Минимальная полезная тепловая мощность – 80/60°C.	кВт	5,75	3.50	4,83
Полезная тепловая мощность - 50/30°C.	кВт	251,34	292,95	320,40
Минимальная полезная тепловая мощность - 50/30°C.	%	6.44	3,83	5.29
Полезная мощность при 30% Pm - возврат 30°	%	40.10	46,97	51,42
КПД при 100% Pn - 80/60°C	%	97,15	97.10	98,37
Средний выход Pn - 80/60°C	%	108.30	97.30	97,88
КПД при минимальной мощности - 80/60°C	%	97.00	94,60	96,51
КПД при 100% Pn - 50/30°C	%	106,50	105,80	106,80
КПД при минимальной мощности - 50/30°C	%	107.30	104,60	105,70
КПД при 30% Pm - возврат 47°C	%	102,70	99.10	102,80
КПД при 30% Pm - возврат 30°C	%	107,80	107,50	108,83
Данные о сжигании				
Эффективность сгорания (100% Pn)	%	97.20	97,70	97,9
Эффективность сгорания (минимум Pn)	%	98.20	98,0	98,0
Потери в дымоходе при работе горелки (100% Pn)	%	2,80	2.30	2.10
Потери в дымоходе при работающей горелке (Pn min)	%	1,80	2.0	2.0
Течь дымохода при выключенной горелке	%	0,02	0,02	0,02
Потери снаряда (100% Pn)	%	0,05	0,60	- 0,47
Потери снарядов (Pn мин)	%	2.40	3.40	1,49
Течь корпуса при выключенной горелке	%	0,03	0,03	0,03
Температура дымовых газов при номинальном расходе тепла	°C	81,20	66,40	66,40
Температура дымовых газов при минимальном подводе тепла	°C	58,70	56,80	56,80
Масса дымовых газов при номинальной тепловой мощности	г/с	104,40	122,49	133,92
Масса дымовых газов при минимальном расходе тепла	г/с	2.28	1,78	2.31
CO2 при номинальной тепловой мощности – G20	%	9,4-9,2	9,3-9,1	9,2-9,0
CO2 при минимальной тепловой мощности – G20	%	9,1-8,9	9,0-8,8	9,0-8,8
CO2 при номинальной тепловой мощности - G30	%	11.40-11.20	11.50-11.10	11,3-11,1
CO2 при минимальной тепловой мощности – G30	%	10.80-10.60	10.90-10.65	10,9-10,7
CO2 при номинальной тепловой мощности - G31	%	10.30-10.10	10.40-10.10	10,3-10,1
CO2 при минимальной тепловой мощности - G31	%	9.80-9.60	9.95-9.70	9,8-9,6
СО при номинальной тепловой мощности	ppm	91	68	68
СО при минимальном подводе тепла	ppm	1	1	1
СО при номинальной тепловой мощности (0 % О2) – взвешенный	ppm	12	9	9
класс NOx	сорт	6	6	6
NOx	мг/кВтч	35	50	50
Отопительный контур				
Регулируемая температура нагрева	°C	30-80/25-45	30-80/25-45	30-80/25-45
Максимальная температура разогревающих упражнений	°C	80	80	80

СИСТЕМА		250	275	300
Максимальное давление разогревающих упражнений	Кафе	5	5	5
Минимальное давление разогревающих упражнений	Кафе	0,3	0,3	0,3
Содержание воды только для отопления/RS	литры	51/57	72/78	76/82
Габаритные характеристики				
Длина	ММ	1581 г.	2388	2388
Глубина	ММ	524	524	524
Высота	ММ	1794 г.	1794 г.	1794 г.
Macca	КГ	273	416	417
Гидравлические соединения				
Отправлять	DN	65	65	65
Газ	DN	40	40	40
Возвращаться	DN	65	65	65
Слив конденсата	или	40	40	40
Дымовая арматура				
Максимальное доступное давление электровентилятора	Па	100(1)	76(1)	100(1)
Минимальное доступное давление электровентилятора	Па	30(1)	4(1)	30(1)
Электрические характеристики				
Источник питания	В/Гц	230/50	230/50	230/50
Установленная электрическая мощность	Вт	432	618	648
Потребляемая мощность циркулятора 100%	Вт	220	315	330
Электроэнергия при выключенном котле	Вт	14	21	21
Степень электроизоляции	ИП	X5D	X5D	X5D
Газоснабжение				
Номинальное давление питания - G20	мбар	20	20	20
Максимальное давление подачи - G20	мбар	25	25	25
Минимальное давление подачи – G20	мбар	15	15	15
Расход топлива - G20	м₃/час	24.96	29.11	31,77
Номинальное давление питания - G30	мбар	30	30	30
Максимальное давление подачи - G30	мбар	35	35	35
Минимальное давление подачи - G30	мбар	20	20	20
Расход топлива - G30	кг/ч	18.60	21:67	23:64
Номинальное давление питания - G30	мбар	37	37	37
Максимальное давление подачи - G30	мбар	45	45	45
Минимальное давление подачи - G30	мбар	25	25	25
Расход топлива - G31	кг/ч	18:32	21:37	23:31

СИСТЕМА		350	375	400
Сертификация СЕ	нет	0476CQ0134	0476CQ0134	0476CQ0134
Категория газа		II _{2H3B/П}	II _{2H3B/П}	II _{2H3B/П}
Тип выхлопа	B23-B23n-B33-B53-C13-C33-C43-C53-C63-C73		-C63-C73- C83-	
Состав	кВт	3xP1K115	1xR1K75+3xR1100	4x100
Энергоэффективность 92/42/EEC	кол-во звезд	4	4	4
Максимальная номинальная тепловая мощность	кВт	342,0	375,0	400,0
Минимальная номинальная тепловая мощность	кВт	6.0	3,70	5.0
Полезная тепловая мощность - 60/80°C.	кВт	332,07	367,94	393,48
Минимальная полезная тепловая мощность – 60/80°C.	кВт	5,77	3,5	4,83
Полезная тепловая мощность - 30/50°С.	кВт	364,23	399,75	427,20
Минимальная полезная тепловая мощность – 30/50°C.	%	6.44	3,83	5.29
Полезная мощность при 30% Pm - возврат 30°	%	58,47	64.11	68,56
КПД при 100% Pn - 60/80°C	%	97.10	97.10	98,37
Средний выход Pn - 60/80°C	%	97,80	97.30	97,88
КПД при минимальной мощности - 60/80°C	%	96.10	94,60	96,51
КПД при 100% Pn - 30/50°C	%	106,50	105,80	106,80
КПД при минимальной мощности - 30/50°C	%	107.30	104,60	105,70
КПД при 30% Pm - возврат 47°C	%	102,70	99.10	102,80
КПД при 30% Pm - возврат 30°C	%	108.30	107,50	108,83
Данные о сжигании				
Эффективность сгорания (100% Pn)	%	97.20	97,70	97,9
Эффективность сгорания (минимум Pn)	%	98.20	98,0	98,0
Потери в дымоходе при работе горелки (100% Pn)	%	2,80	2.30	2.10
Потери в дымоходе при работающей горелке (Pn min)	%	1,80	2.0	2.0
Течь дымохода при выключенной горелке	%	0,02	0,02	0,02
Потери снаряда (100% Pn)	%	0,10	0,60	- 0,47
Потери снарядов (Pn мин)	%	2.10	3.40	1,49
Течь корпуса при выключенной горелке	%	0,03	0,03	0,03
Температура дымовых газов при номинальном расходе тепла	°C	81,20	66,40	66,40
Температура дымовых газов при минимальном подводе тепла	°C	58,70	56,80	56,80
Масса дымовых газов при номинальной тепловой мощности	г/с	152,43	167,13	178,56
Масса дымовых газов при минимальном расходе тепла	г/с	2.28	1,78	2.31
СО2 при номинальной тепловой мощности – G20	%	9,4-9,2	9,3-9,1	9,2-9,0
CO2 при минимальной тепловой мощности – G20	%	9,1-8,9	9,0-8,8	9,0-8,8
CO2 при номинальной тепловой мощности - G30	%	11.40-11.20	11.50-11.10	11,3-11,1
СО2 при минимальной тепловой мощности – G30	%	10.80-10.60	10.90-10.65	10,9-10,7
CO2 при номинальной тепловой мощности - G31	%	10.30-10.10	10.40-10.10	10,3-10,1
CO2 при минимальной тепловой мощности - G31	%	9.80-9.60	9.95-9.70	9,8-9,6
СО при номинальной тепловой мощности	ppm	87	68	68
СО при минимальном подводе тепла	ppm	1	1	1
СО при номинальной тепловой мощности (0 % О2) – взвешенный	ppm	8	9	9
класс NOx	сорт	6	6	6
NOx	мг/кВтч	38	50	50
Отопительный контур				
Регулируемая температура нагрева	°C	30-80/25-45	30-80/25-45	30-80/25-45
Максимальная температура разогревающих упражнений	°C	80	80	80

СИСТЕМА		350	375	400
Максимальное давление разогревающих упражнений	Кафе	5	5	5
Минимальное давление разогревающих упражнений	Кафе	0,3	0,3	0,3
Содержание воды только для отопления/RS	литры	76/82	130/136	134/140
Габаритные характеристики				
Длина	мм	2388	3195	3195
Глубина	мм	524	524	524
Высота	ММ	1794 г.	1794 г.	1794 г.
Macca	КГ	417	584	585
Гидравлические соединения				
Отправлять	DN	100	100	100
Газ	DN	40	40	40
Возвращаться	DN	100	100	100
Слив конденсата	или	40	40	40
Дымовая арматура				
Максимальное доступное давление электровентилятора	Па	100(1)	76(1)	100(1)
Минимальное доступное давление электровентилятора	Па	30(1)	4(1)	30(1)
Электрические характеристики				
Источник питания	В/Гц	230/50	230/50	230/50
Установленная электрическая мощность	Вт	648,0	834	864
Потребляемая мощность циркулятора 100%	Вт	330,0	425,0	440
Электроэнергия при выключенном котле	Вт	21	28	28
Степень электроизоляции	ИП	X5D	X5D	X5D
Газоснабжение				
Номинальное давление питания - G20	мбар	20	20	20
Максимальное давление подачи - G20	мбар	25	25	25
Минимальное давление подачи – G20	мбар	15	15	15
Расход топлива - G20	м₃/час	36.18	39,70	42,36
Номинальное давление питания - G30	мбар	30	30	30
Максимальное давление подачи - G30	мбар	35	35	35
Минимальное давление подачи - G30	мбар	20	20	20
Расход топлива - G30	кг/ч	26.97	21:55	31,52
Номинальное давление питания - G30	мбар	37	37	37
Максимальное давление подачи - G30	мбар	45	45	45
Минимальное давление подачи - G30	мбар	25	25	25
Расход топлива - G31	кг/ч	26.55	29.14	31.08

СИСТЕМА		450	500	600
Сертификация СЕ	нет	0476CQ0134	0476CQ0134	0476CQ0134
Категория газа		II _{2H3B/П}	II _{2H3B/П}	II _{2H3B/П}
Тип выхлопа	парень	B23-B23p-B33-B53-C13-C33-C43-C53-C63-C73- C83- C93 C13x-C33x-C43x-C53x-C63x-C83x-C93x		
Состав	кВт	4xR1K115	5xR1K100	5xR1K120
Энергоэффективность 92/42/EEC	кол-во звезд	4	4	4
Максимальная номинальная тепловая мощность	кВт	456,0	500,0	590,0
Минимальная номинальная тепловая мощность	кВт	6	5.0	6
Полезная тепловая мощность - 80/60°C.	кВт	442,76	491,85	573,2
Минимальная полезная тепловая мощность – 80/60°C.	кВт	5,77	4,83	5,75
Полезная тепловая мощность - 50/30°C.	кВт	485,64	534,0	628,35
Минимальная полезная тепловая мощность - 50/30°C.	%	6.44	5.29	6.44
Полезная мощность при 30% Pm - возврат 30°	%	77,96	85,70	100,25
КПД при 100% Pn - 80/60°C	%	97.10	98,37	97,15
Средний выход Pn - 80/60°C	%	97,80	97,88	108.30
КПД при минимальной мощности - 80/60°C	%	96.10	96,51	97.00
КПД при 100% Pn - 50/30°C	%	106,50	106,80	106,50
КПД при минимальной мощности - 50/30°C	%	107.30	105,70	107.30
КПД при 30% Pm - возврат 47°C	%	102,70	102,80	102,70
КПД при 30% Pm - возврат 30°C	%	108.30	108,83	107,80
Данные о сжигании				
Эффективность сгорания (100% Pn)	%	97.20	97,9	97,9
Эффективность сгорания (минимум Pn)	%	98.20	98,0	98,0
Потери в дымоходе при работе горелки (100% Pn)	%	2,80	2.10	2.10
Потери в дымоходе при работающей горелке (Pn min)	%	1,80	2.0	2.0
Течь дымохода при выключенной горелке	%	0,02	0,02	0,02
Потери снаряда (100% Pn)	%	0,10	- 0,47	- 0,47
Потери снарядов (Pn мин)	%	2.10	1,49	1,49
Течь корпуса при выключенной горелке	%	0,03	0,03	0,03
Температура дымовых газов при номинальном расходе тепла	°C	81,20	66,40	81,20
Температура дымовых газов при минимальном подводе тепла	°C	58,70	56,80	56,80
Масса дымовых газов при номинальной тепловой мощности	г/с	203,24	223,20	261.10
Масса дымовых газов при минимальном расходе тепла	г/с	2,70	2.31	2.31
СО2 при номинальной тепловой мощности – G20	%	9,4-9,2	9,2-9,0	9,2-9,0
CO2 при минимальной тепловой мощности – G20	%	9,1-8,9	9,0-8,8	9,0-8,8
CO2 при номинальной тепловой мощности - G30	%	11.40-11.20	11,3-11,1	11,3-11,1
СО2 при минимальной тепловой мощности – G30	%	10.80-10.60	10,9-10,7	10,9-10,7
СО2 при номинальной тепловой мощности - G31	%	10.30-10.10	10,3-10,1	10,3-10,1
СО2 при минимальной тепловой мощности - G31	%	9.80-9.60	9,8-9,6	9,8-9,6
СО при номинальной тепловой мощности	ppm	87	68	68
СО при минимальном подводе тепла	ppm	1	1	1
СО при номинальной тепловой мощности (0 % О2) – взвешенный	ppm	8	9	9
класс NOx	сорт	6	6	6
NOx	мг/кВтч	38	50	50
Отопительный контур				
Регулируемая температура нагрева	°C	30-80/25-45	30-80/25-45	30-80/25-45
Максимальная температура разогревающих упражнений	°C	80	80	80

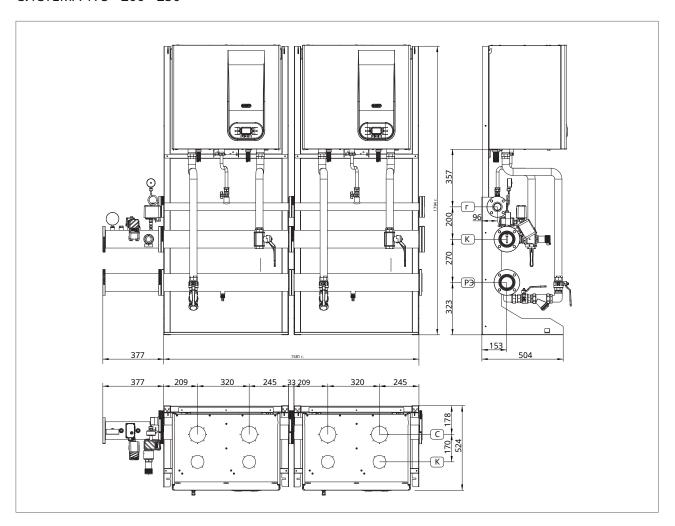


СИСТЕМА		450	500	600
Максимальное давление разогревающих упражнений	Кафе	5	5	5
Минимальное давление разогревающих упражнений	Кафе	0,3	0,3	0,3
Содержание воды только для отопления/RS	литры	134/140	168/174	168/174
Габаритные характеристики				
Длина	мм	3195	4002	4002
Глубина	ММ	524	524	524
Высота	ММ	1794 г.	1794 г.	1794 г.
Macca	КГ	436	470	470
Гидравлические соединения				
Отправлять	DN	100	100	100
Газ	DN	40	40	40
Возвращаться	DN	100	100	100
Слив конденсата	или	40	40	40
Дымовая арматура				
Максимальное доступное давление электровентилятора	Па	100(1)	100(1)	100(1)
Минимальное доступное давление электровентилятора	Па	21,5(1)	30(1)	21,5(1)
Электрические характеристики				
Источник питания	В/Гц	230/50	230/50	230/50
Установленная электрическая мощность	Вт	864	1080	1080
Потребляемая мощность циркулятора 100%	Вт	440	550	550
Электроэнергия при выключенном котле	Вт	28	35	35
Степень электроизоляции	ИП	X5D	X5D	X5D
Газоснабжение				
Номинальное давление питания - G20	мбар	20	20	20
Максимальное давление подачи - G20	мбар	25	25	25
Минимальное давление подачи – G20	мбар	15	15	15
Расход топлива - G20	м₃/час	48,24	52,95	62,4
Номинальное давление питания - G30	мбар	30	30	30
Максимальное давление подачи - G30	мбар	35	35	35
Минимальное давление подачи - G30	мбар	20	20	20
Расход топлива - G30	кг/ч	35,96	39.40	46,5
Номинальное давление питания - G30	мбар	37	37	37
Максимальное давление подачи - G30	мбар	45	45	45
Минимальное давление подачи - G30	мбар	25	25	25
Расход топлива - G31	кг/ч	35.40	38,85	44,25

4. ГАБАРИТНЫЕ РАЗМЕРЫ И ПОДКЛЮЧЕНИЯ

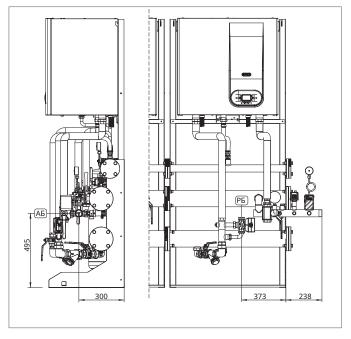
СИСТЕМА 150

Легенда


K	ПОСТАВКА СИСТЕМЫ ОТОПЛЕНИЯ	Ду65
РЭ	ВОЗВРАТ СИСТЕМЫ ОТОПЛЕНИЯ	Ду65
АБ	УДАЛЕННАЯ ДОСТАВКА КОТЛА	Ø1″1/2
РБ	ДИСТАНЦИОННЫЙ ВОЗВРАТ КОТЛА	Ø1"
Г	ГАЗ	Ду40
K	воздухозаборник	Ø80
С	дымовыход	Ø80

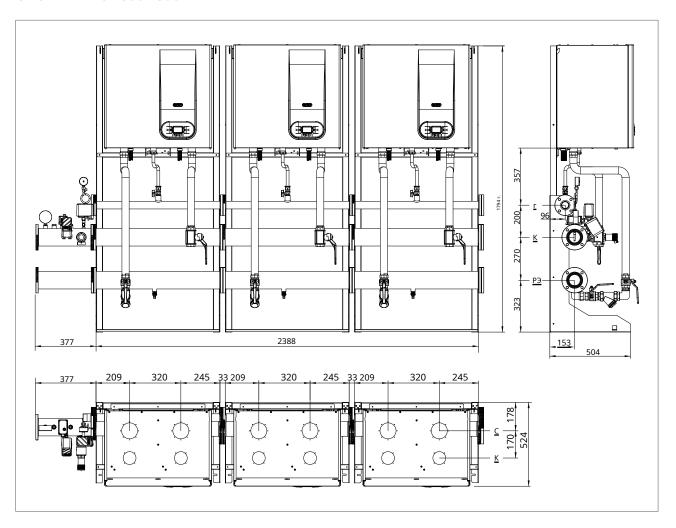
ВЕРСИЯ RS НА ДОПОЛНИТЕЛЬНОМ МОДУЛЕ

СИСТЕМА 175 - 200 - 250



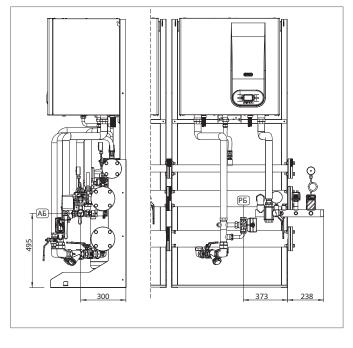
Легенда

K	ПОСТАВКА СИСТЕМЫ ОТОПЛЕНИЯ	Ду65
РЭ	ВОЗВРАТ СИСТЕМЫ ОТОПЛЕНИЯ	
АБ	УДАЛЕННАЯ ДОСТАВКА КОТЛА	Ø1″1/2
РБ	ДИСТАНЦИОННЫЙ ВОЗВРАТ КОТЛА	Ø1"
Γ	ГАЗ	Ду40
K	воздухозаборник	Ø80
С	дымовыход	Ø80


СИСТЕМА модель	состав
175	1 x P1K 75 +1 x P1K 100
200	2 x 100 рэндов
250	2 x P1K 120

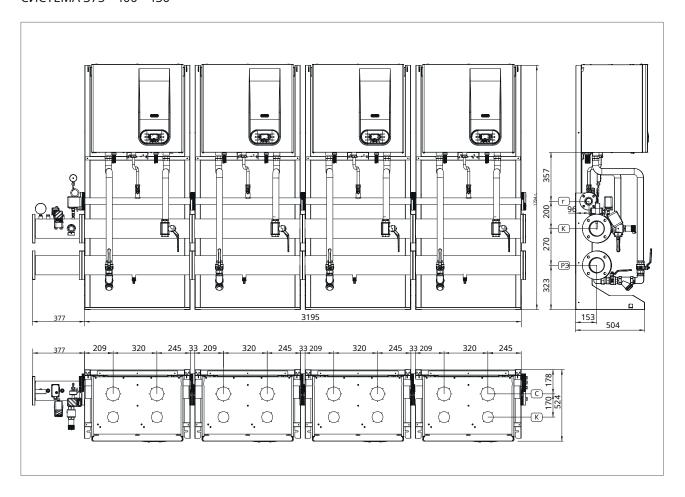
BEPCUЯ RS НА ДОПОЛНИТЕЛЬНОМ МОДУЛЕ

СИСТЕМА 275 - 300 - 350



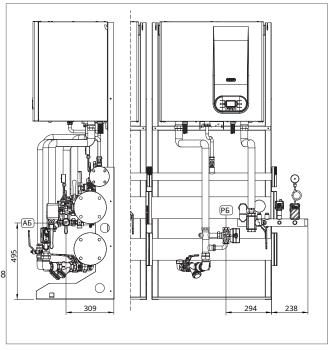
Легенда

K	ПОСТАВКА СИСТЕМЫ ОТОПЛЕНИЯ	Ду65
РЭ	ВОЗВРАТ СИСТЕМЫ ОТОПЛЕНИЯ	Ду65
АБ	УДАЛЕННАЯ ДОСТАВКА КОТЛА	Ø1″1/2
РБ	ДИСТАНЦИОННЫЙ ВОЗВРАТ КОТЛА	Ø1"
Γ	ГАЗ	Ду40
K	воздухозаборник	Ø80
С	дымовыход	Ø80


СИСТЕМА модель	состав
275	1 x P1K 75 + 2 x P1K 100
300	3 x 100 рэндов
350	3 x P1K 115

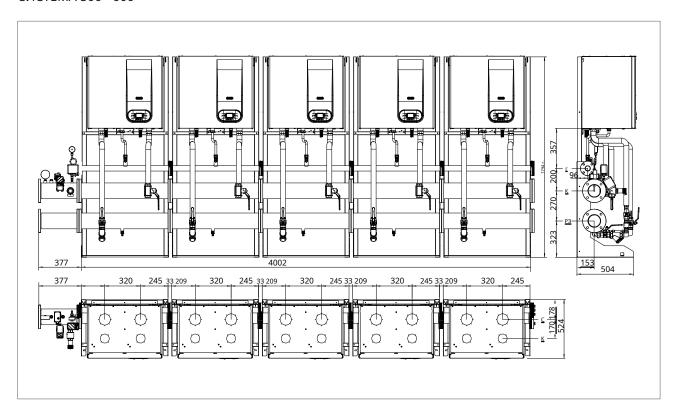
BEPCUЯ RS НА ДОПОЛНИТЕЛЬНОМ МОДУЛЕ

СИСТЕМА 375 - 400 - 450


Легенда

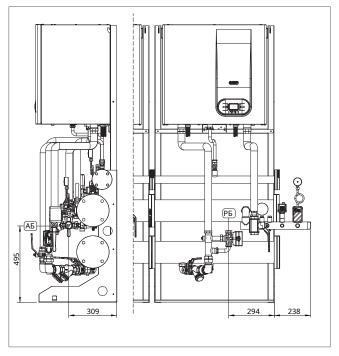
K	ПОСТАВКА СИСТЕМЫ ОТОПЛЕНИЯ	Ду100
РЭ	ВОЗВРАТ СИСТЕМЫ ОТОПЛЕНИЯ	Ду100
АБ	УДАЛЕННАЯ ДОСТАВКА КОТЛА	Ø1″1/2
РБ	ДИСТАНЦИОННЫЙ ВОЗВРАТ КОТЛА	Ø1"
Γ	ГАЗ	Ду40
K	ВОЗДУХОЗАБОРНИК	Ø80
С	дымовыход	Ø80

СИСТЕМА версия	состав
375	1 x P1K 75 + 3 x P1K 100
400	4 x 1к 100 рэндов
450	4 x P1K 115


NB. При обращении в Технический офис возможны комбинации до 8 тепловых модулей мощностью более 500 кВт.

BEPCUЯ RS НА ДОПОЛНИТЕЛЬНОМ МОДУЛЕ

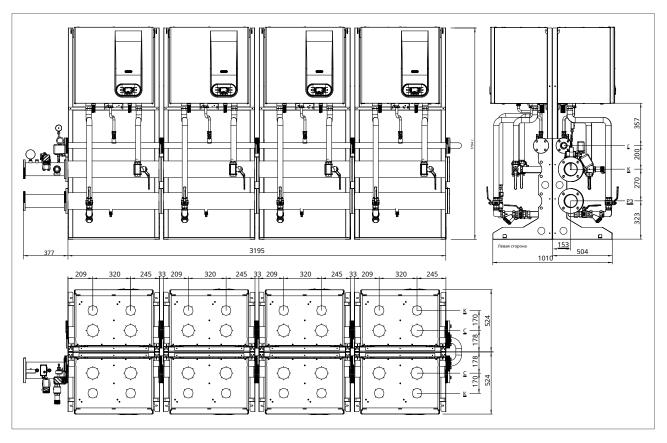
СИСТЕМА 500 - 600


Легенда

K	ПОСТАВКА СИСТЕМЫ ОТОПЛЕНИЯ	Ду100
РЭ	ВОЗВРАТ СИСТЕМЫ ОТОПЛЕНИЯ	Ду100
АБ	УДАЛЕННАЯ ДОСТАВКА КОТЛА	Ø1″1/2
РБ	ДИСТАНЦИОННЫЙ ВОЗВРАТ КОТЛА	Ø1"
Γ	ГАЗ	Ду40
K	ВОЗДУХОЗАБОРНИК	Ø80
С	дымовыход	Ø80

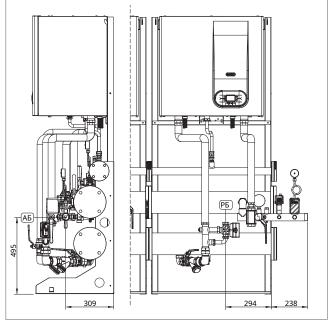
СИСТЕМА версия	состав
500	5 x 100 рэндов
600	5 x P1K 120

NB. При обращении в Технический офис возможны комбинации до 8 тепловых модулей мощностью более 500 кВт.


ВЕРСИЯ RS НА ДОПОЛНИТЕЛЬНОМ МОДУЛЕ

СИСТЕМА, состоящая из теплогенераторов, установленных вплотную друг к другу.

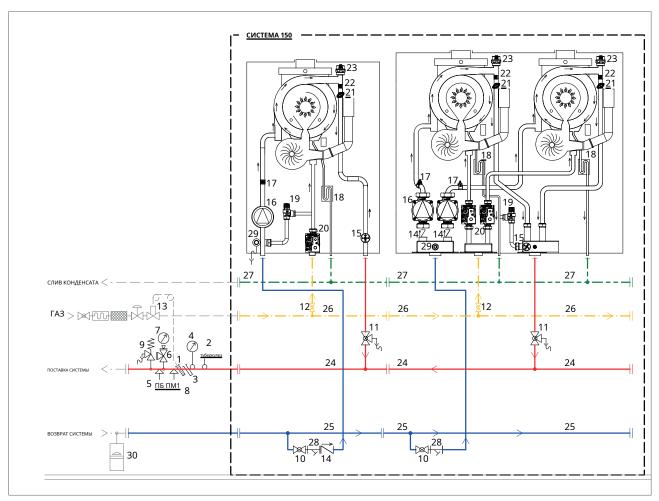
Ниже приведены некоторые примеры последовательных композиций с максимум 8 генераторами.



Легенда

K	ПОСТАВКА СИСТЕМЫ ОТОПЛЕНИЯ	Ду100
РЭ	ВОЗВРАТ СИСТЕМЫ ОТОПЛЕНИЯ	Ду100
Г	ГАЗ	Ду40
K	ВОЗДУХОЗАБОРНИК	Ø80
С	ДЫМОВЫХОД	Ø80

СИСТЕМА модель	состав	Икс мм
200	2 х 100 рэндов	774
250	2 x P1K 120	774
275	1 x P1K 75 + 2 x P1K 100	1581 г.
300	3 х 100 рэндов	1581 г.
350	3 x P1K 115	1581 г.
375	1 x P1K 75 + 3 x P1K 100	1581 г.
400	4 x 1к 100 рэндов	1581 г.
450	4 x P1K 115	1581 г.
500	5 x 100 рэндов	2388
600	6 x P1K 100	2388
700	7 x P1K 100	3195
800	8 x P1K 100	3195
950	8 x P1K 120	3195

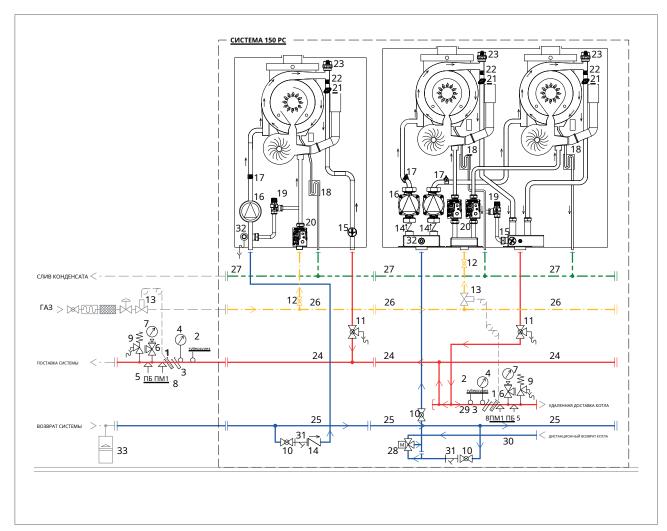


АБ	АБ УДАЛЕННАЯ ДОСТАВКА КОТЛА			
РБ	дистанционный возврат котла	Ø1"		

5. ГИДРАВЛИЧЕСКАЯ СХЕМА

Ниже приведен пример каскадной установки генератора серии СИСТЕМА мощностью 150 кВт в 150-ДЮЙМОВАЯ СИСТЕМА.

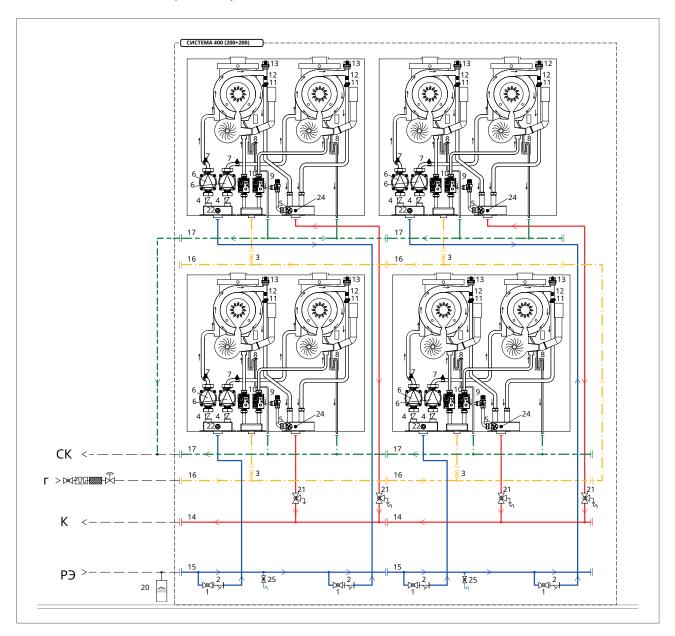
ЛЕГЕНДА


- 1. НОДНИК ДЛЯ КОНТРОЛЬНОГО TEPMOMETPA INAIL
- 2. СРОК. БЛОК РУЧНОГО СБРОСА, ОДОБРЕННЫЙ INAIL
- 3. НУ ДЛЯ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДЛЯ ВИК
- 4. ТЕРМОМЕТР, ОДОБРЕННЫЙ INAIL
- 5. БЛОК-ПРЕКС, ОДОБРЕННЫЙ INAIL
- 6. КРАН ДЛЯ СОЕДИНЕНИЯ МАНОМЕТРА И ИСПЫТАТЕЛЬНЫЙ ФЛАНЕЦ, ТРУБКА АМОРТИЗАТОРА
- 7. ИНДИКАТОР ДАВЛЕНИЯ, COOTBETCTBУЮЩИЙ INAIL
- 8. РЕЛЕ БЛОКИРОВКИ МИНИМАЛЬНОГО ДАВЛЕНИЯ, ОДОБРЕННОЕ INAIL.
- 9. ПРЕДОХРАНИТЕЛЬНЫЙ КЛАПАН НА 3 БАР, ОДОБРЕННЫЙ INAIL (ПО ЗАПРОСУ)
- 10. ЛИНЕЙНЫЙ ЗАПОРНЫЙ КРАН В КОМПЛЕКТЕ С ФИЛЬТРОМ;
- 11. ТРЕХХОДОВОЙ ЗАПОРНЫЙ КРАН;
- 12. КРАН ЗАПОРНЫЙ ГАЗОВЫЙ
- 13. КЛАПАН ОТКЛЮЧЕНИЯ ТОПЛИВА

ВИК (ПО ЗАПРОСУ)

- 14. ОБРАТНЫЙ КЛАПАН
- 15. РЕЛЕ ДАВЛЕНИЯ ВОДЫ
- 16. ЭЛЕКТРОННЫЙ ЦИРКУЛЯТОР ERP
- 17. ЗОНД ВОЗВРАТА ОТОПЛЕНИЯ
- 18. СИФОН ДЛЯ СБОРА КОНДЕНСАТА
- 19. ПРЕДОХРАНИТЕЛЬНЫЙ КЛАПАН 3 БАР, ОДОБРЕННЫЙ СЕ.
- 20. ГАЗОВЫЙ КЛАПАН
- 21. ПРЕДОХРАНИТЕЛЬНЫЙ ТЕРМОСТАТ 95°С.
- 22. НАГРЕВАТЕЛЬНЫЙ ЗОНД
- 23. ВЕСЕЛЫЙ ВОЗДУШНО-ВЫПУСКНОЙ КЛАПАН
- 24. ПОДАЧНЫЙ КОЛЛЕКТОР СИСТЕМЫ
- 25. ВОЗВРАТНЫЙ КОЛЛЕКТОР СИСТЕМЫ
- 26. ГАЗОВЫЙ ПАТРУБОК
- 27. КОЛЛЕКТОР СТОКА КОНДЕНСАТА
- 28. ФИЛЬТР
- 29. СЛИВНОЙ КРАН
- 30. РАСШИРИТЕЛЬНЫЙ БАК (МОНТАЖНИК)

Ниже приведен пример каскадной установки генератора серии СИСТЕМА мощностью 150 кВт в СИСТЕМА 150 РС»с дистанционным питанием котла.


ЛЕГЕНДА

- 1. НОДНИК ДЛЯ КОНТРОЛЬНОГО TEPMOMETPA INAIL
- 2. СРОК. БЛОК РУЧНОГО СБРОСА, ОДОБРЕННЫЙ INAIL
- 3. НУ ДЛЯ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДЛЯ ВИК
- 4. ТЕРМОМЕТР, ОДОБРЕННЫЙ INAIL
- 5. БЛОК-ПРЕКС, ОДОБРЕННЫЙ INAIL
- 6. КРАН ДЛЯ СОЕДИНЕНИЯ МАНОМЕТРА И ИСПЫТАТЕЛЬНЫЙ ФЛАНЕЦ, ТРУБКА АМОРТИЗАТОРА
- 7. ИНДИКАТОР ДАВЛЕНИЯ, COOTBETCTBУЮЩИЙ INAIL
- 8. РЕЛЕ БЛОКИРОВКИ МИНИМАЛЬНОГО ДАВЛЕНИЯ, ОДОБРЕННОЕ INAIL.
- 9. ПРЕДОХРАНИТЕЛЬНЫЙ КЛАПАН НА 3 БАР, ОДОБРЕННЫЙ INAIL (ПО ЗАПРОСУ)
- 10. ЛИНЕЙНЫЙ ЗАПОРНЫЙ КРАН В КОМПЛЕКТЕ С ФИЛЬТРОМ;
- 11. ТРЕХХОДОВОЙ ЗАПОРНЫЙ КРАН;
- 12. КРАН ЗАПОРНЫЙ ГАЗОВЫЙ
- 13. КЛАПАН ОТКЛЮЧЕНИЯ ТОПЛИВА ВИК (ПО ЗАПРОСУ)
- 14. ОБРАТНЫЙ КЛАПАН

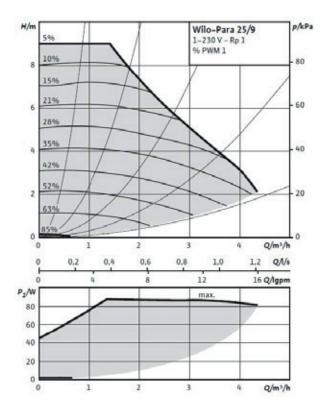
- 15. РЕЛЕ ДАВЛЕНИЯ ВОДЫ
- 16. ЭЛЕКТРОННЫЙ ЦИРКУЛЯТОР ERP
- 17. ЗОНД ВОЗВРАТА ОТОПЛЕНИЯ
- 18. СИФОН ДЛЯ СБОРА КОНДЕНСАТА
- 19. ПРЕДОХРАНИТЕЛЬНЫЙ КЛАПАН З БАР, ОДОБРЕННЫЙ СЕ.
- 20. ГАЗОВЫЙ КЛАПАН
- 21. ПРЕДОХРАНИТЕЛЬНЫЙ ТЕРМОСТАТ 95°С.
- 22. НАГРЕВАТЕЛЬНЫЙ ЗОНД
- 23. ВЕСЕЛЫЙ ВОЗДУШНО-ВЫПУСКНОЙ КЛАПАН
- 24. ПОДАЧНЫЙ КОЛЛЕКТОР СИСТЕМЫ
- 25. ВОЗВРАТНЫЙ КОЛЛЕКТОР СИСТЕМЫ
- 26. ГАЗОВЫЙ ПАТРУБОК
- 27. КОЛЛЕКТОР СТОКА КОНДЕНСАТА
- 28. ДИСТАНЦИОННЫЙ ПЕРЕКЛЮЧАТЕЛЬ КОТЛА
- 29. УДАЛЕННЫЙ НАПОРНЫЙ КОЛЛЕКТОР КОТЛА
- 30. ДИСТАНЦИОННЫЙ ВОЗВРАТНЫЙ КОЛЛЕКТОР КОТЛА
- 31. ФИЛЬТР
- 32. СЛИВНОЙ КРАН
- 33. РАСШИРИТЕЛЬНЫЙ БАК (МОНТАЖНИК)

Ниже приведен пример встречно-каскадной установки генератора серии СИСТЕМА мощностью 400 кВт вСИСТЕМА 400" (200+200).

ЛЕГЕНДА

- 1. ПЕРЕХОДНИК ДЛЯ КОНТРОЛЬНОГО ТЕРМОМЕТРА INAIL
- 2. СРОК. БЛОК РУЧНОГО СБРОСА, ОДОБРЕННЫЙ INAIL
- 3. ДЛЯ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДЛЯ ВИК
- 4. ТЕРМОМЕТР, ОДОБРЕННЫЙ INAIL
- 5. БЛОК-ПРЕКС, ОДОБРЕННЫЙ INAIL
- 6. КРАН ДЛЯ СОЕДИНЕНИЯ МАНОМЕТРА И ИСПЫТАТЕЛЬНЫЙ ФЛАНЕЦ, ТРУБКА АМОРТИЗАТОРА
- 7. ИНДИКАТОР ДАВЛЕНИЯ, COOTBETCTBУЮЩИЙ INAIL
- 8. РЕЛЕ БЛОКИРОВКИ МИНИМАЛЬНОГО ДАВЛЕНИЯ, ОДОБРЕННОЕ INAIL.
- 9. ПРЕДОХРАНИТЕЛЬНЫЙ КЛАПАН НА 3 БАР, ОДОБРЕННЫЙ INAIL (ПО ЗАПРОСУ)
- 10. ЛИНЕЙНЫЙ ЗАПОРНЫЙ КРАН В КОМПЛЕКТЕ С ФИЛЬТРОМ;
- 11. ТРЕХХОДОВОЙ ЗАПОРНЫЙ КРАН;
- 12. КРАН ЗАПОРНЫЙ ГАЗОВЫЙ
- 13. ТОПЛИВООТКЛЮЧИТЕЛЬНЫЙ КЛАПАН VIC (ОПЦИЯ)

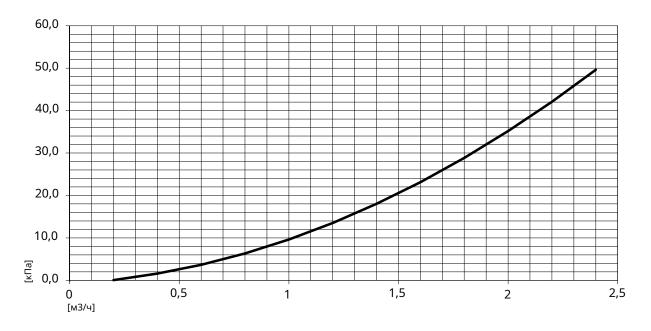
- 14. ОБРАТНЫЙ КЛАПАН
- 15. РЕЛЕ ДАВЛЕНИЯ ВОДЫ
- 16. ЭЛЕКТРОННЫЙ ЦИРКУЛЯТОР ERP
- 17. ЗОНД ВОЗВРАТА ОТОПЛЕНИЯ
- 18. СИФОН ДЛЯ СБОРА КОНДЕНСАТА
- 19. ПРЕДОХРАНИТЕЛЬНЫЙ КЛАПАН 3 БАР, ОДОБРЕННЫЙ СЕ.
- 20. ГАЗОВЫЙ КЛАПАН
- 21. ПРЕДОХРАНИТЕЛЬНЫЙ ТЕРМОСТАТ 95°С.
- 22. НАГРЕВАТЕЛЬНЫЙ ЗОНД
- 23. ВЕСЕЛЫЙ ВОЗДУШНО-ВЫПУСКНОЙ КЛАПАН
- 24. ПОДАЧНЫЙ КОЛЛЕКТОР СИСТЕМЫ
- 25. ВОЗВРАТНЫЙ КОЛЛЕКТОР СИСТЕМЫ
- 26. ГАЗОВЫЙ ПАТРУБОК
- 27. КОЛЛЕКТОР СТОКА КОНДЕНСАТА
- 28. ФИЛЬТР
- 29. СЛИВНОЙ КРАН
- 30. РАСШИРИТЕЛЬНЫЙ БАК (МОНТАЖНИК))



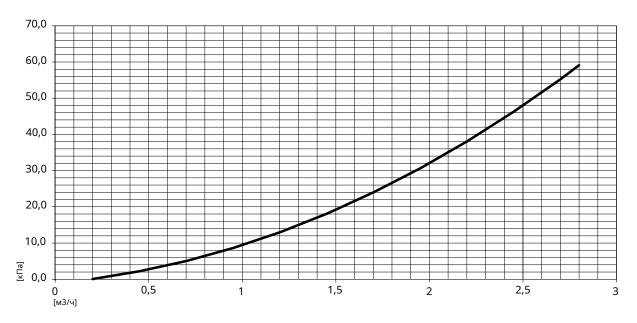
6. ХАРАКТЕРИСТИЧЕСКИЕ КРИВЫЕ

гидравлические пружины устройства)

R1K 50 R1K 75 - 115₍₁₎



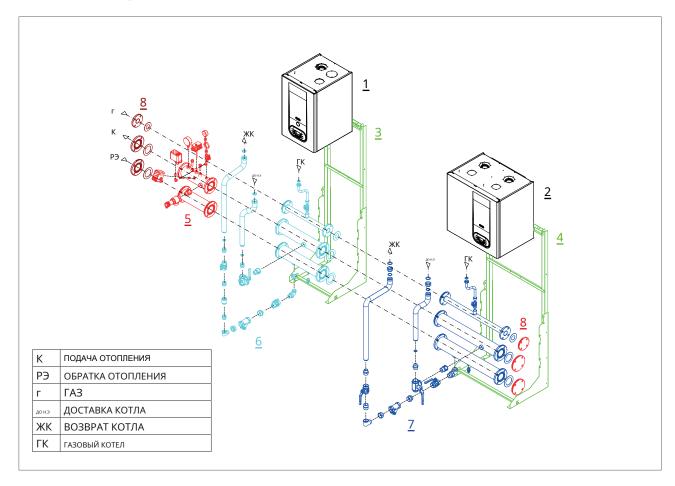
R1K 60 R1K 115 - 120₍₁₎



ПАДЕНИЕ ГИДРАВЛИЧЕСКОГО ДАВЛЕНИЯ

R1K 50 - R1K 75₍₁₎и 100 рэндов₍₁₎

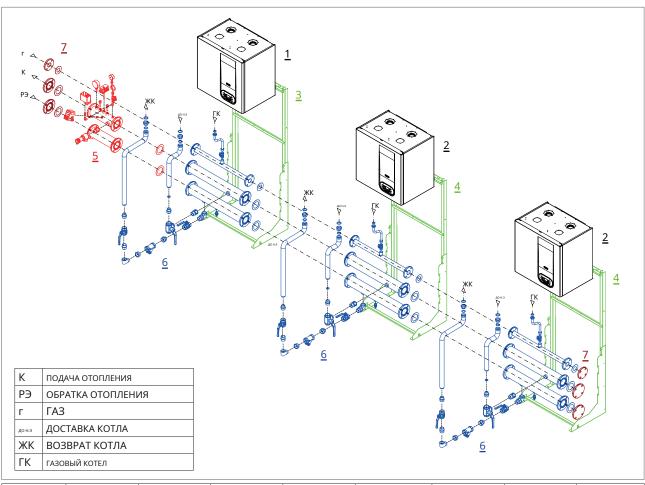
R1K 60 - R1K 115₍₁₎и R1K 115₍₁₎



Примечание. Кривые относятся к отдельным тепловыделениям отдельного генератора.

7. ОБЩИЙ ТЕХНИЧЕСКИЙ МОНТАЖ

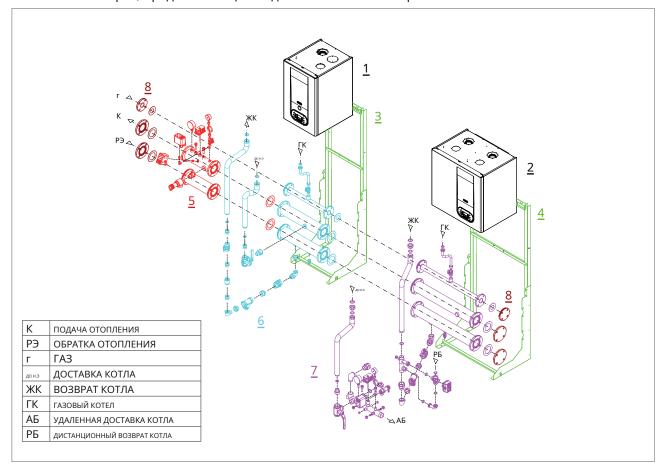
Техническая сборка моделей SISTEMA 150



СИСТЕМА	1	2 композиции-	3 код	4 код	5 код	6 код	7 код	8 код доступа
модель	состав	ция	аксессуар	аксессуар	аксессуар	аксессуар	аксессуар	серьёзный
150	1 x P1K 50	1 х 100 рэндов	1 x 12-01614	1 x 12-01713	1 x 65-00408	1 x 65-00524	1 x 65-00410	1 x 65-00678

код	описание
12-01614	САМОНЕСУЩАЯ РАМА КОЛЛЕКТОР DN65 ДЛЯ R1K 50-60
12-01713	САМОНЕСУЩАЯ РАМА КОЛЛЕКТОР DN65 ДЛЯ R1K 75-100-115-120
65-00408	ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР DN65 B KOMПЛЕКТЕ INAIL
65-00524	ДОПОЛНИТЕЛЬНЫЙ ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР DN65 ДЛЯ R1K 50-60
65-00410	ДОПОЛНИТЕЛЬНЫЙ ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР ДУ65 ДЛЯ Р1К 75-100-115-120
65-00678	КОМПЛЕКТ ФЛАНЕЦ DN65

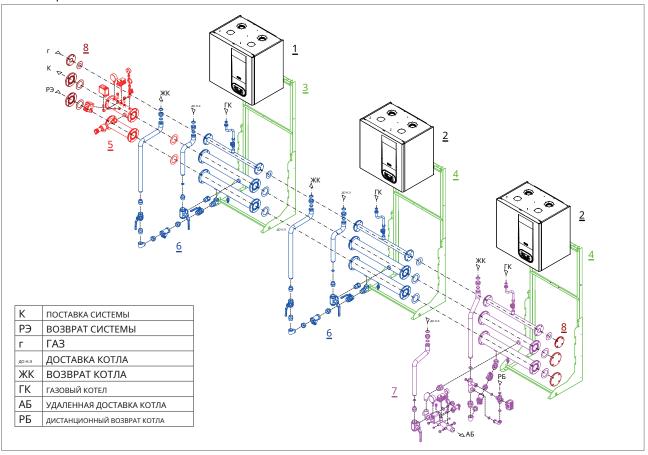
Техническая сборка, представляющая модели SISTEMA 175 - 200 - 250 - 275 - 300 - 350 - 375 - 400 - 450 - 500 - 600



СИСТЕМА модель	1 состав	2 состав	3 код аксессуар	4 код аксессуар	5 код аксессуар	6 код аксессуар	7 код аксессуар
175	1 x R1K 75	1 х 100 рэндов	1 x 12-01713	1 x 12-01713	1 x 65-00408	2 x 65-00410	1 x 65-00678
200	1 х 100 рэндов	1 х 100 рэндов	1 x 12-01713	1 x 12-01713	1 x 65-00408	2 x 65-00410	1 x 65-00678
250	1 x R1K 120	1 x P1K 120	1 x 12-01713	1 x 12-01713	1 x 65-00408	2 x 65-00410	1 x 65-00678
275	1 x R1K 75	2 х 100 рэндов	1 x 12-01713	2 x 12-01713	1 x 65-00408	3 x 65-00410	1 x 65-00678
300	1 х 100 рэндов	2 х 100 рэндов	1 x 12-01713	2 x 12-01713	1 x 65-00408	3 x 65-00410	1 x 65-00678
350	1 x R1K 115	2 x P1K 115	1 x 12-01713	2 x 12-01713	1 x 65-00408	3 x 65-00410	1 x 65-00678
375	1 x R1K 75	3 х 100 рэндов	1 x 12-01912	3 x 12-01912	1 x 65-00653	4 x 65-00530	1 x 65-00679
400	1 х 100 рэндов	3 х 100 рэндов	1 x 12-01912	3 x 12-01912	1 x 65-00653	4 x 65-00530	1 x 65-00679
450	1 xR1K 115	3 x P1K 115	1 x 12-01912	3 x 12-01912	1 x 65-00653	4 x 65-00530	1 x 65-00679
500	1 х 100 рэндов	4 x P1K 100	1 x 12-01912	4 x 12-01912	1 x 65-00653	5 x 65-00530	1 x 65-00679
600	1 x R1K 120	4 x P1K 120	1 x 12-01912	4 x 12-01912	1 x 65-00653	5 x 65-00530	1 x 65-00679

код	описание
12-01713	САМОНЕСУЩАЯ РАМА КОЛЛЕКТОР DN65 ДЛЯ R1K 75-100-115-120
12-01912	САМОНЕСУЩАЯ РАМА КОЛЛЕКТОР DN100 ДЛЯ R1K 75-100-115-120
65-00408	ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР DN65 В КОМПЛЕКТЕ INAIL
65-00653	ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР DN100 В КОМПЛЕКТЕ INAIL
65-00410	ДОПОЛНИТЕЛЬНЫЙ ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР DN65 R1K ДЛЯ R1K 75-100-115-120
65-00530	ДОПОЛНИТЕЛЬНЫЙ ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР DN100 R1K ДЛЯ R1K 75-100-115-120
65-00678	КОМПЛЕКТ ФЛАНЕЦ DN65
65-00679	КОМПЛЕКТ ФЛАНЦЕВ DN100

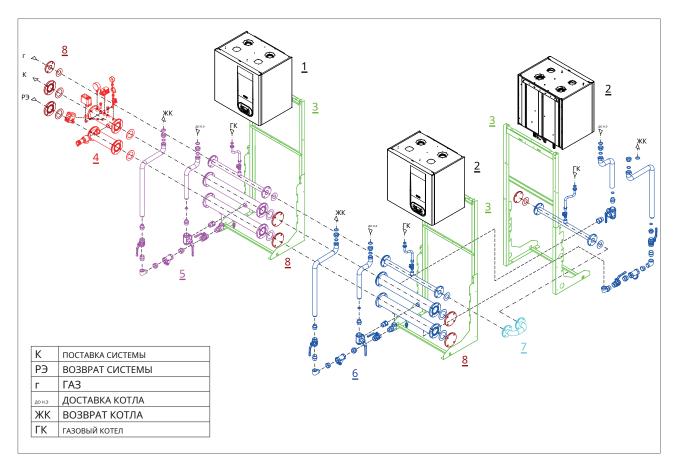
Техническая сборка, представляющая модели SISTEMA 150 - версия RS


СИСТЕМА модель	1 состав	2 композиции- ЦИЯ	3 код	4 код	5 код	6 код	7 код	8 код	-
			аксессуар	аксессуар	аксессуар	аксессуар	аксессуар	аксессуар	
150	1 xR1K 50	1 х 100 рэндов	1 x 12-01614	1 x 12-01713	1 x 65-00408	1 x 65-00524	1 x 65-00542	1 x 65-00678	-

код	описание
12-01614	САМОНЕСУЩАЯ РАМА КОЛЛЕКТОР DN65 ДЛЯ R1K 50-60
12-01713	САМОНЕСУЩАЯ РАМА КОЛЛЕКТОР DN65 ДЛЯ R1K 75-100-115-120
65-00408	КОЛЛЕКТОР ГОРИЗОНТАЛЬНЫЙ DN65 INAIL
65-00542	ДОПОЛНИТЕЛЬНЫЙ ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР ДУ65 С ВЫНОСНОЙ КОТЛОЙ СИСТЕМОЙ ДЛЯ Р1К 75-100-115-120
65-00678	КОМПЛЕКТ ФЛАНЕЦ DN65
65-00524	ДОПОЛНИТЕЛЬНЫЙ ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР DN65 R1K ДЛЯ R1K 50-60

Техническая сборка, представляющая модели SISTEMA 175 - 200 - 250 - 275 - 300 - 350 - 375 - 400 - 450 - 500.

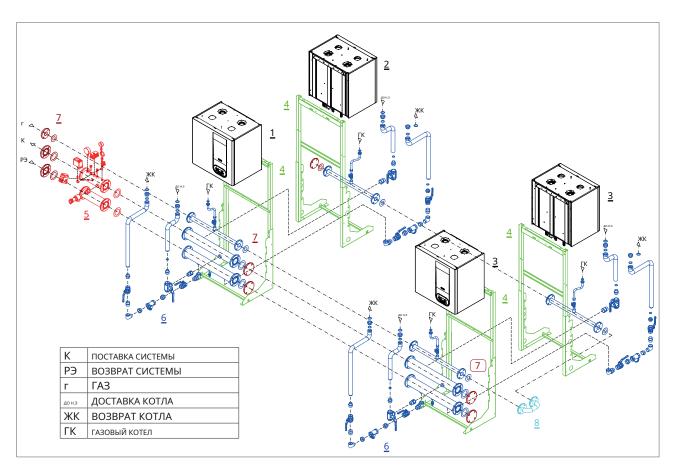
- 600 - версия RS



СИСТЕМА модель	1 состав	2 состав	3 код аксессуар	4 код аксессуар	5 код аксессуар	6 код аксессуар	7 код аксессуар	8 код аксессуар
175	1 x R1K 75	1 х 100 рэндов	1 x 12-01713	1 x 12-01713	1 x 65-00408	1 x 65-00410	1 x 65-00542	1 x 65-00678
200	1 х 100 рэндов	1 х 100 рэндов	1 x 12-01713	1 x 12-01713	1 x 65-00408	1 x 65-00410	1 x 65-00542	1 x 65-00678
250	1 xR1K 120	1 x P1K 120	1 x 12-01713	1 x 12-01713	1 x 65-00408	1 x 65-00410	1 x 65-00542	1 x 65-00678
275	1 xR1K 75	2 х 100 рэндов	1 x 12-01713	2 x 12-01713	1 x 65-00408	1 x 65-00410	1 x 65-00542	1 x 65-00678
300	1 х 100 рэндов	2 х 100 рэндов	1 x 12-01713	2 x 12-01713	1 x 65-00408	2 x 65-00410	1 x 65-00542	1 x 65-00678
350	1 xR1K 115	2 x P1K 115	1 x 12-01713	2 x 12-01713	1 x 65-00408	2 x 65-00410	1 x 65-00542	1 x 65-00678
375	1 x R1K 75	3 х 100 рэндов	1 x 12-01912	3 x 12-01912	1 x 65-00653	3 x 65-00530	1 x 65-00544	1 x 65-00679
400	1 х 100 рэндов	3 х 100 рэндов	1 x 12-01912	3 x 12-01912	1 x 65-00653	3 x 65-00530	1 x 65-00544	1 x 65-00679
450	1 x R1K 115	3 x P1K 115	1 x 12-01912	3 x 12-01912	1 x 65-00653	3 x 65-00530	1 x 65-00544	1 x 65-00679
500	1 х 100 рэндов	4 x P1K 100	1 x 12-01912	4 x 12-01912	1 x 65-00653	4 x 65-00530	1 x 65-00544	1 x 65-00679
600	1 x R1K 120	4 x P1K 120	1 x 12-01912	4 x 12-01912	1 x 65-00653	4 x 65-00530	1 x 65-00544	1 x 65-00679

код	описание
12-01713	САМОНЕСУЩАЯ РАМА КОЛЛЕКТОР DN65 ДЛЯ R1K 75-100-115-120
12-01912	САМОНЕСУЩАЯ РАМА КОЛЛЕКТОР DN100 ДЛЯ R1K 75-100-115-120
65-00408	КОЛЛЕКТОР ГОРИЗОНТАЛЬНЫЙ DN65 INAIL
65-00653	ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР DN100 INAIL
65-00410	ДОПОЛНИТЕЛЬНЫЙ ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР ДУ65 ДЛЯ Р1К 75-100-115-120
65-00530	ДОПОЛНИТЕЛЬНЫЙ ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР ДУ100 ДЛЯ Р1К 75-100-115-120
65-00542	ДОПОЛНИТЕЛЬНЫЙ ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР ДУ65 С ВЫНОСНОЙ КОТЛОЙ СИСТЕМОЙ ДЛЯ Р1К 75-100-115-120
65-00554	ДОПОЛНИТЕЛЬНЫЙ ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР ДУ100 С ВЫНОСНОЙ КОТЛОЙ СИСТЕМОЙ ДЛЯ Р1К 75-100-115-120
65-00678	КОМПЛЕКТ ФЛАНЕЦ DN65
65-00679	КОМПЛЕКТ ФЛАНЦЕВ DN100

Техническая сборка, представляющая модели SISTEMA 175 - 200 - 250 - 275 - 300 - 350 - 375 - 400 - 450 - 500 - 600



СИСТЕМА модель	1 состав	2 состав	3 код аксессуар	4 код аксессуар	5 код аксессуар	6 код аксессуар	7 код аксессуар	8 код аксессуар
275	1 x P1K 75	2 х 100 рэндов	3 x 12-01932	1 x 65-00653	1 x 65-00530	1 x 65-00641	1 x 65-00679	1 x 12-00589
300	1 х 100 рэндов	2 х 100 рэндов	3 x 12-01932	1 x 65-00653	1 x 65-00530	1 x 65-00641	1 x 65-00679	1 x 12-00589
350	1 x P1K 115	2 x P1K 115	3 x 12-01932	1 x 65-00653	1 x 65-00530	1 x 65-00641	1 x 65-00679	1 x 12-00589
500	1 х 100 рэндов	4 x P1K 100	5 x 12-01932	1 x 65-00653	1 x 65-00530	2 x 65-00641	1 x 65-00679	1 x 12-00589
600	1 x P1K 120	4 x P1K 120	7 x 12-01932	1 x 65-00653	1 x 65-00530	3 x 65-00641	1 x 65-00679	1 x 12-00589

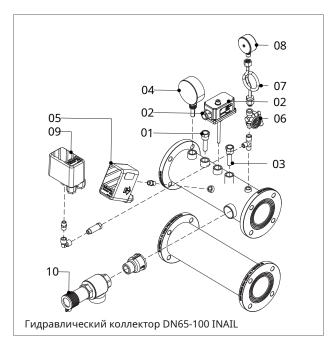
код	описание
12-01932	САМОНЕСУЩАЯ РАМА КОЛЛЕКТОР DN100 ДЛЯ R1K 75-100-115-120
65-00653	ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР DN100 INAIL
65-00530	ДОПОЛНИТЕЛЬНЫЙ ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР ДУ100 ДЛЯ Р1К 75-100-115-120
65-00641	ДОПОЛНИТЕЛЬНЫЙ ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР DN100 ДЛЯ R1K 75-100-115-120 УСТАНОВКИ ВПЕРЕД
65-00679	КОМПЛЕКТ ФЛАНЦЕВ DN100

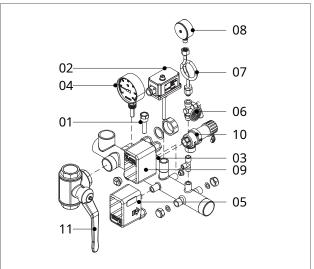
Техническая сборка, представляющая модели SISTEMA 175 - 200 - 250 - 375 - 400 - 450 - 800 - 960.

СИСТЕМА модель	1 состав	2 состав	2 состав	4 код аксессуар	5 код аксессуар	6 код аксессуар	7 код аксессуар	8 код аксессуар
175	1 x P1K 75	1 х 100 рэндов	-	2 x 12-01932	1 x 65-00653	1 x 65-00641	1 x 65-00679	1 x 12-00589
200	1 х 100 рэндов	1 х 100 рэндов	-	2 x 12-01932	1 x 65-00653	1 x 65-00641	1 x 65-00679	1 x 12-00589
250	1 x P1K 120	1 x P1K 120	-	2 x 12-01932	1 x 65-00653	1 x 65-00641	1 x 65-00679	1 x 12-00589
375	1 x P1K 75	1 х 100 рэндов	2 х 100 рэндов	4 x 12-01932	1 x 65-00653	2 x 65-00641	1 x 65-00679	1 x 12-00589
400	1 х 100 рэндов	1 х 100 рэндов	2 х 100 рэндов	4 x 12-01932	1 x 65-00653	2 x 65-00641	1 x 65-00679	1 x 12-00589
450	1 x P1K 115	1 x P1K 115	2 x P1K 115	4 x 12-01932	1 x 65-00653	2 x 65-00641	1 x 65-00679	1 x 12-00589
800	1 х 100 рэндов	1 х 100 рэндов	6 x P1K 100	8 x 12-01932	1 x 65-00653	4 x 65-00641	1 x 65-00679	1 x 12-00589
960	1 x P1K 120	1 x P1K 120	6 x P1K 120	8 x 12-01932	1 x 65-00653	4 x 65-00641	1 x 65-00679	1 x 12-00589

код	описание
12-01932	КОЛЛЕКТОР РАМНЫЙ самонесущий dn100 ДЛЯ P1К 75-100-115-120
65-00653	ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР DN100 INAIL
65-00530	ДОПОЛНИТЕЛЬНЫЙ ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР ДУ100 ДЛЯ Р1К 75-100-115-120
65-00641	ДОПОЛНИТЕЛЬНЫЙ ГОРИЗОНТАЛЬНЫЙ КОЛЛЕКТОР DN100 ДЛЯ R1K 75-100-115-120 УСТАНОВКИ ВПЕРЕД
65-00679	КОМПЛЕКТ ФЛАНЦЕВ DN100

8. АКСЕССУАРЫ

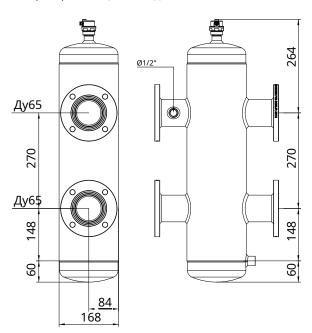

ГРУППА БЕЗОПАСНОСТИ ИНАИЛ

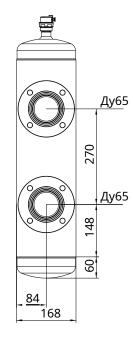

Каждый отдельный генератор поставляется с «защитным коллектором INAIL» в комплекте со всеми устройствами безопасности, защиты и управления, требуемыми коллекцией «R» 2009 года, созданной для удовлетворения требований, вытекающих из конструкции, как того требует Раздел II Министерского постановления. 12.01.1975 г., без ущерба для установки расширительного бачка и крана отсечки топлива.

ОПИСАНИЕ

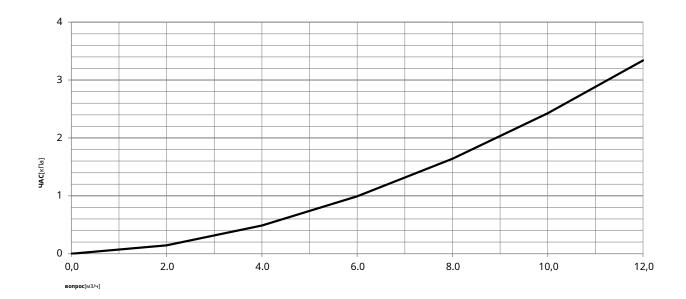
- 1. НОД ДЛЯ КОНТРОЛЬНОГО ТЕРМОМЕТРА
 - ИНАИЛ
- 2. ПРЕДОХРАНИТЕЛЬНЫЙ ТЕРМОСТАТ С РУЧНЫМ СБРОСОМ, ОДОБРЕННЫЙ INAIL. Термовыключатель в сопровождении декларации соответствия и копии сертификата.
 - Одобрение INAIL и инструкции.
- 3. ГРУБКА ДЛЯ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА КЛАПАНА ОТКЛЮЧЕНИЯ ТОПЛИВА
- 4. ТЕРМОМЕТР С ДНИЩЕМ, ОДОБРЕННЫЙ INAIL ШКАЛА 0–120°С.
- 5. БЛОК РЕЛЕ ДАВЛЕНИЯ, ОДОБРЕННЫЙ INAIL.

 РАБОЧИЙ ДИАПАЗОН: 1÷5 БАР; СТАНДАРТНОЕ
 ДАВЛЕНИЕ ВМЕШАТЕЛЬСТВА: 3 БАР; Выключатель,
 действующий на давление соответствующего контура,
 сопровождается документом, включающим декларацию
 соответствия, копию сертификата допуска.
 - ИНАИЛ и инструкция.
- 6. КРАН С СОЕДИНЕНИЕМ ДЛЯ МАНОМЕТРА Е ФЛАНЕЦ ДЛЯ КОНТРОЛЬНОГО МАНОМЕТРА;
- 7. ТРУБКА АМОРТИЗАТОРА;
- 8. ИНДИКАТОР ДАВЛЕНИЯ, СООТВЕТСТВУЮЩИЙ INAIL РАБОЧИЙ ДИАПАЗОН: $0 \div 6$ БАР;
- 9. РЕЛЕ БЛОКИРОВКИ МИНИМАЛЬНОГО ДАВЛЕНИЯ, ОДОБРЕННОЕ INAIL КАЛИБРОВКА: 0,5 БАР; Переключатель INAIL, действующий на давление соответствующего контура, сопровождается документом, включая декларацию соответствия, копию сертификата соответствия. ИНАИЛ и инструкция.
- 10. ПРЕДОХРАНИТЕЛЬНЫЙ КЛАПАН, ОДОБРЕННЫЙ INAIL, КАЛИБРОВАННЫЙ НА 3 БАР; Устройство безопасности принудительного действия, тип которого зависит от установленной мощности, сопровождается отчетом о калибровке INAIL и знаком одобрения СЕ.

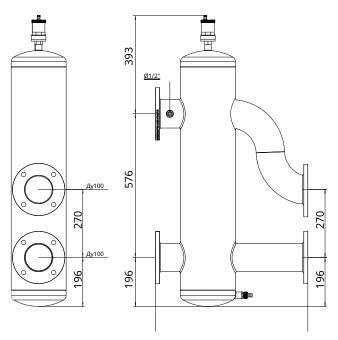

Гидравлический коллектор Ø1"1/2 INAIL для системы RS с дистанционным питанием котла

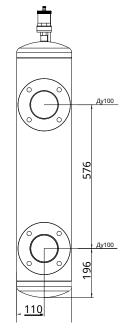


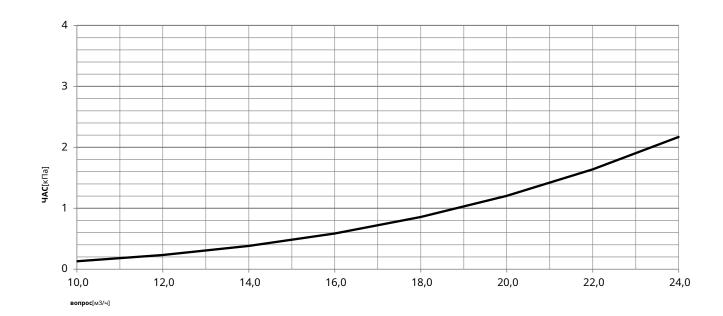
ГИДРАВЛИЧЕСКИЙ СЕПАРАТОР


Для того, чтобы теплогенератор всегда работал исправно и без проблем, связанных с изменчивостью расходов на вторичной обмотке, абсолютно необходима установка гидравлического выключателя.

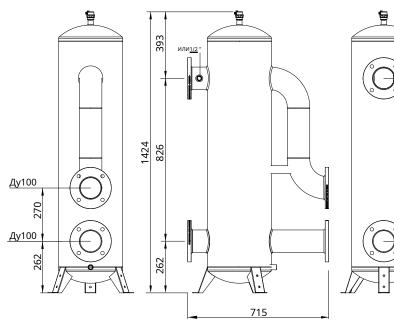
код 26116LPCоединения Ду 150 - Ду 65 для генераторов мощностью до 300 кВт

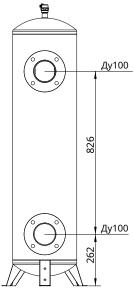


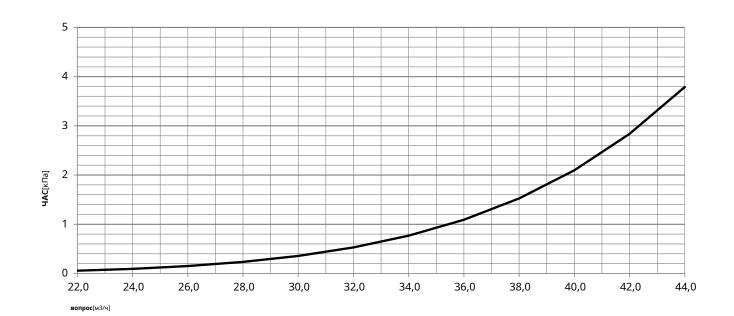

Объем	Скорость	Потеря _{нагрузка}
м3/ч	PC	кПа
0	0,000	0,000
2	0,031	0,145
4	0,063	0,487
6	0,094	0,992
8	0,126	1641
10	0,157	2426
12	0,189	3340



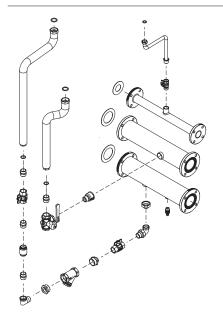
код 26212LPCоединения Ду 200 - Ду 100 для генераторов мощностью от 300 до 600 кВт




Объем	Скорость	Потеря _{нагрузка}
м3/ч	PC	кПа
0	0,000	0,000
2	0,018	0,001
4	0,035	0,007
6	0,053	0,026
8	0,071	0,064
10	0,088	0,130
12	0,106	0,232
14	0,124	0,381
16	0,142	0,586
18	0,159	0,857
20	0,177	1204
22	0,195	1638
24	0,212	2170
26	0,230	2811

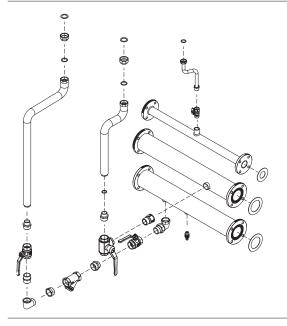


код 12-00659Соединения Ду 300 - Ду 100 для генераторов мощностью более 600 кВт



Объем	Скорость	Потеря _{нагрузка}	
м3/ч	PC	кПа	
22	0,086	0,056	
24	0,094	0,093	
26	0,102	0,150	
28	0,110	0,234	
30	0,118	0,356	
32	0,126	0,529	
34	0,134	0,768	
36	0,142	1092	
38	0,149	1526	
40	0,157	2097	
42	0,165	2838	
44	0,173	3790	

ГИДРАВЛИЧЕСКИЕ КОЛЛЕКТОРЫ


ДОПОЛНИТЕЛЬНЫЙ КОМПЛЕКТ ГОРИЗОНТАЛЬНОГО КОЛЛЕКТОРА ДЛЯ R1K 50-60

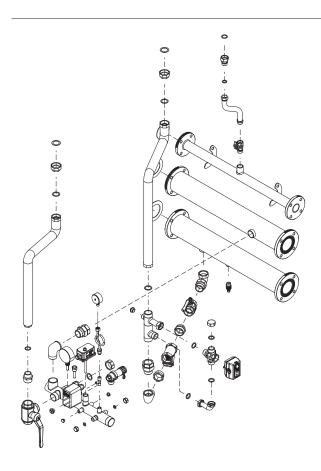
Ду 65 - код 65-00524

Ду 100 - код 65-00388

В комплект входит:

- обратные патрубки термомодуля, состоящие из жестких труб в комплекте с изоляцией, секционными шаровыми кранами, фильтром, трехходовым шаровым краном, обратным клапаном;
- Обратные/обратные гидравлические коллекторы стальные Ду 65-100 в комплекте с изоляцией и фланцевыми соединениями РN6;
- Коллектор подачи газа стальной Ду 40 с фланцевыми соединениями РN6 в комплекте с газовым краном и патрубком для подключения к термомодулю;

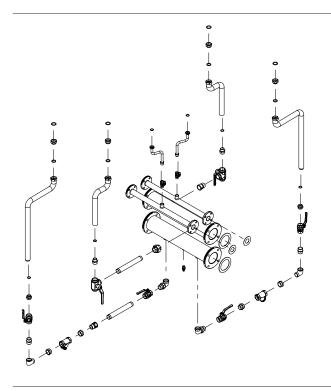
ДОПОЛНИТЕЛЬНЫЙ КОМПЛЕКТ ГОРИЗОНТАЛЬНОГО КОЛЛЕКТОРА ДЛЯ R1K 75-100-115-120


Ду 65 - код 65-00410

Ду 100 - код 65-00530

В комплект входит:

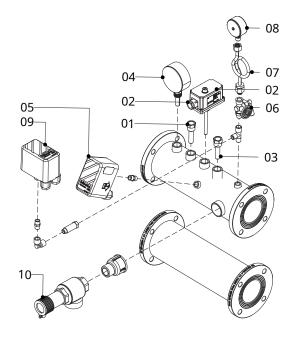
- обратные патрубки термомодуля, состоящие из жестких труб в комплекте с изоляцией, секционными шаровыми кранами, фильтром, трехходовым шаровым краном;
- Обратные/обратные гидравлические коллекторы стальные Ду 65-100 в комплекте с изоляцией и фланцевыми соединениями PN6;
- Коллектор подачи газа стальной Ду 40 с фланцевыми соединениями РN6 в комплекте с газовым краном и патрубком для подключения к термомодулю;


НАБОР КОЛЛЕКТОР ГОРИЗОНТАЛЬНЫЙ ДОПОЛНИТЕЛЬНЫЙ В КОМПЛЕКТЕ С ДИСТАНЦИОННОЙ СИСТЕМОЙ ПИТАНИЯ КОТЛА В КОМПЛЕКТЕ С ГРУППОЙ БЕЗОПАСНОСТИ INAIL

ДУ 65 ДЛЯ Р1К 50-60 - код. 65-00523 ДУ 100 ДЛЯ Р1К 50-60 - код. 65-00575 ДУ 65 ДЛЯ Р1К 75-100-115-120 - код. 65-00542 ДУ 100 ДЛЯ Р1К 75-100-115-120 - код. 65-00554

В комплект входит:

- патрубки подачи и обратки термомодуля, состоящие из жестких труб в комплекте с изоляцией, секционных шаровых кранов в комплекте с фильтром, трехходового шарового крана, обратного клапана;
- Обратные/обратные гидравлические коллекторы стальные Ду 65-100 в комплекте с изоляцией и фланцевыми соединениями PN6;
- Коллектор подачи газа стальной Ду 40 с фланцевыми соединениями РN6 в комплекте с газовым краном и патрубком для подключения к термомодулю;
- система дистанционного питания котла, состоящая из переключающего клапана, зонда котла, напорного коллектора Ø1″1/2 в комплекте с изоляцией группы безопасности, регулирования и контроля, одобренной INAIL Министерский указ от 01.12.1975), в состав входят:
 - № 1 блокировочное реле давления, одобренное INAIL, с ручным сбросом, включая скважину,
 - № 1 одобренное INAIL реле минимального давления с ручным сбросом, включая скважину,
 - № 1 блочный термостат, одобренный INAIL, с одобренным ручным сбросом, включая колодец;
 - 1 смотровой колодец с вертикальной или наклонной осью, внутренним диаметром не менее 10 мм, для установки термометра контроля температуры;
 - 1 трехходовой кран манометра с дополнительным фланцевым соединением в комплекте с 1 манометром подходящего полного диаметра 80 мм х 3/8 дюйма;
 - 1 термометр с полной шкалой 120 °C диаметром 80 мм х 3/8 дюйма;
 - одобренный INAIL предохранительный клапан, откалиброванный на давление 3 бар (по запросу);



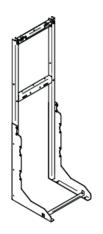
набор КОЛЛЕКТОР ГОРИЗОНТАЛЬНЫЙ ДОПОЛНИТЕЛЬНЫЙ В КОМПЛЕКТЕ ДЛЯ УСТАНОВКИ НАЗАД

Ду 100 ДЛЯ Р1К 75-100-115-120 - код. 65-0641

В комплект входит:

- обратные соединения для двойного термомодуля, состоящие из жестких труб в комплекте с изоляцией, секционных шаровых кранов в комплекте с фильтром, трехходового шарового крана, обратного клапана;
- гидравлические коллекторы возврата/потока из стали DN100 в комплекте с изоляцией и фланцевыми соединениями PN6;
- двойной стальной коллектор подачи газа Ду 40 с фланцевыми соединениями РN6 в комплекте с газовым краном и патрубком для подключения к термомодулю;

КОМПЛЕКТ ВПУСКНОГО КОЛЛЕКТОРА


Ду 65 - код 65-00408

Ду 100 - код 65-00653 В

комплект входят:

- гидравлические коллекторы возврата/возврата из стали DN 65-100 в комплекте с изоляцией и фланцевыми соединениями PN6.
- Группа безопасности INAIL в комплекте:
 - № 1 блокировочное реле давления, одобренное INAIL, с ручным сбросом, включая скважину,
 - № 1 одобренное INAIL реле минимального давления с ручным сбросом, включая скважину,
 - № 1 блочный термостат, одобренный INAIL, с одобренным ручным сбросом, включая колодец;
 - 1 смотровой колодец с вертикальной или наклонной осью, внутренним диаметром не менее 10 мм, для установки термометра контроля температуры;
 - 1 трехходовой кран манометра с дополнительным фланцевым соединением в комплекте с 1 манометром подходящего полного диаметра 80 мм х 3/8 дюйма;
 - 1 термометр с полной шкалой 120 °C диаметром 80 мм х 3/8 дюйма;
 - одобренный INAIL предохранительный клапан, откалиброванный на давление 3 бар (по запросу);

САМОНЕСУЩАЯ РАМА ДЛЯ

КОЛЛЕКТОРЫ DN 65 ДЛЯ R1К 50-60 - код. 12-01614 КОЛЛЕКТОРЫ ДУ 100 ДЛЯ P1К 50-60 - код. 12-01912 КОЛЛЕКТОРЫ ДУ 65 ДЛЯ P1К 75-100-115-120 - код. 12-01713

КОЛЛЕКТОРЫ ДУ 100 ДЛЯ Р1К 75-100-115-120 - код. 12-01932

КОМПЛЕКТ ФЛАНЕЦ

Ду 65 - код 65-00678

Ду 100 - код 65-00679

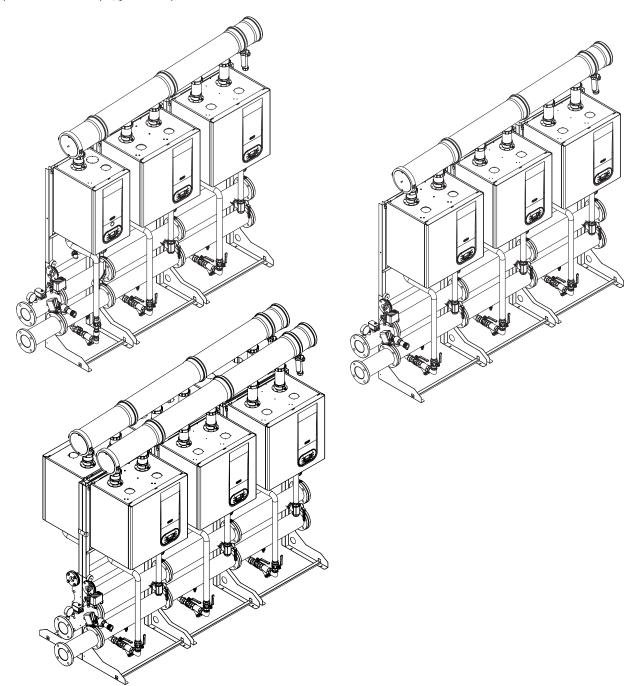
ПЛАСТИНЧАТЫЙ ТЕПЛООБМЕННИК

В случае замены традиционного генератора в старой системе, полной загрязнений и наличии проблем с промывкой системы, чтобы не создавать засоры внутри котла и последующую неисправность, рекомендуется установка теплообменника. Последний, являясь интерфейсом между первичным контуром, в котором находится теплогенератор, и вторичным контуром, гарантирует эффективное разделение теплоносителей и, следовательно, защиту самого генератора.

ТАБЛИЦА ОБМЕННИКОВ

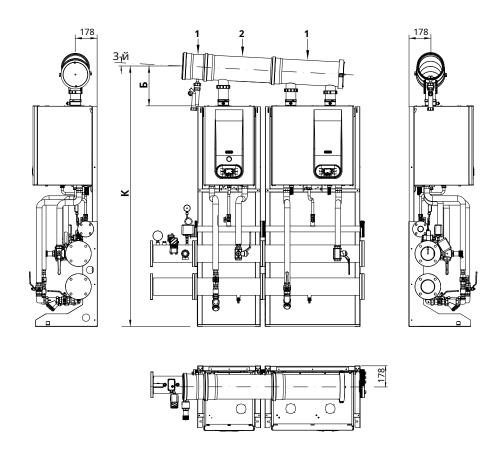
Генератор модель	Начальный				вторичный				Пластинчатый теплообменник			
	вопрос	T _B	Твне	4AC MAKC	вопрос	Тв	T _{BHE}	4AC MAKC				
	литр/час	°C	°C	кПа	литр/час	°C	°C	кПа	код	модель	тарелки	парень
СИСТЕМА 150	6450	80	59,9	5.49	8600	55	70	9.46	25-00733	Z3	29	подлежащий проверке
				4.10				7.07	25-00702	3Б400	80	паяный
СИСТЕМА 175	7525	80	60	5.10	10033	55	70	8.80	25-00734	Z3	35	подлежащий проверке
				4,70				8.11	25-00703	3Б450	80	паяный
СИСТЕМА 200	8600	80	59,9	5.32	11467	55	70	9.16	25-00476	Z3	39	подлежащий проверке
				6.00				10.33	25-00703	3Б450	80	паяный
СИСТЕМА 250	10148	80	60,1	5.07	13531	55,2	70	8,74	25-00918	Z3	47	подлежащий проверке
				5.37				9.26	25-00735	3Б450	100	паяный
СИСТЕМА 275	11825	80	60,0	5.36	15767	55,0	70	9.24	25-00535	Z3	53	подлежащий проверке
				5.08				8,75	25-00736	3Б450	120	паяный
СИСТЕМА 300	12900	80	59,9	5.49	17200	55,0	70	9.46	25-00712	Z3	57	подлежащий проверке
				5,95				10:25 утра	25-00736	3Б450	120	паяный
СИСТЕМА 350	14706	80	60,2	5.17	19608	55,2	70	8.90	25-00713	Z3	67	подлежащий проверке
				5.02				8,64	25-00737	3Б450	150	паяный
СИСТЕМА 375	16125	80	59,9	5.49	21500	55,0	70	9.46	25-00740	Z3	71	подлежащий проверке
				5,93				10.22	25-00737	3Б450	150	паяный
СИСТЕМА 400	17200	80	59,9	5.32	22933	55,0	70	9.16	25-00741	Z3	77	подлежащий проверке
				6,67				11.49	25-00737	3Б450	150	паяный
СИСТЕМА 450	19608	80	60,2	5,62	25800	55,0	70	9.46	25-00742	Z3	85	подлежащий проверке
				4,66				7,84	25-00738	3Б700	100	паяный
СИСТЕМА 500	21500	80	59,9	5.42	28667	55,0	70	9.34	25-00743	Z3	95	подлежащий проверке
				5.51				9.20	25-00738	3Б700	100	паяный

ПРИМЕЧАНИЕ:Размеры, предложенные в таблице, следует понимать как чисто ориентировочные и поэтому должны подлежать проверке со стороны специалиста, составляющего проект.



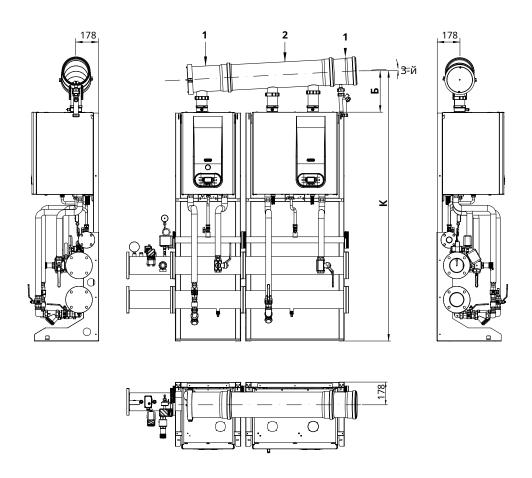
9. КОПТИЛЬНЫЙ ЦЕХ

При каскадной установке допускается подключение к одному дымоходу путем установки дымоходных коллекторов.


Комплекты изготовлены из полипропилена, чтобы гарантировать высокую механическую устойчивость к химическому воздействию конденсата и функциональность при установке.

Комплект позволяет подключать каждый отдельный генератор к главному коллектору с помощью специального разъема, оснащенного механическим невозвратным дымовым клапаном типа «клапетка», чтобы избежать обратного потока продуктов сгорания.

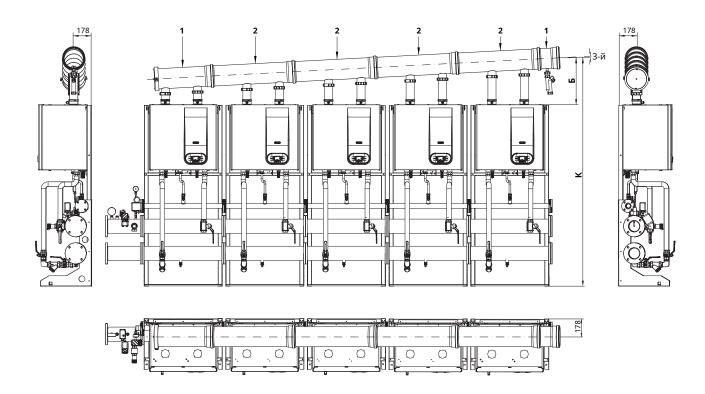
ДЫМОСБОРНИКИ - СИСТЕМА 150 - Левое подключение


СИСТЕМА версия	1	2	3	коллектор Ø160		коллектор Ø200	
				вмм	б мм	вмм	бмм
150	1 x 50-00211	1 x 50-00191	-	2098	304	-	-
150	1 x 50-00203	1 x 50-00218	-	-	-	2118	324

код	описание
50-00211	ОСНОВАНИЕ ДЫМОВОГО КОЛЛЕКТОРА Ø160 ИЗ ПП ДЛЯ R1K 75-100-115-120
50-00203	БАЗОВЫЙ ДЫМОВЫЙ КОЛЛЕКТОР Ø200 ИЗ ПП ДЛЯ R1K 75-100-115-120
50-00191	ДОПОЛНИТЕЛЬНЫЙ ДЫМОВЫЙ КОЛЛЕКТОР Ø160 ИЗ ПП ДЛЯ R1K 50-60
50-00218	ДОПОЛНИТЕЛЬНЫЙ ДЫМОСБОР Ø200 ИЗ ПП ДЛЯ R1K 50-60

НБ 50-00211 и 50-00203 комплектуются сифоном для отвода конденсата.

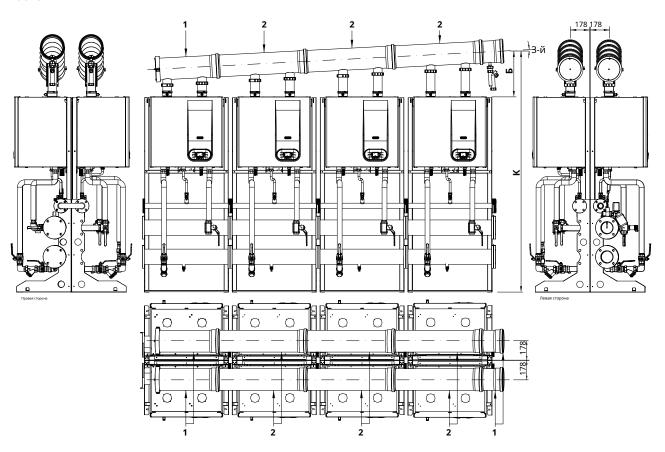
ДЫМОСБОРНИКИ - СИСТЕМА 150 - Правое подключение


СИСТЕМА модель	1	2	3	коллектор Ø160		коллектор Ø160 коллектор Ø200		1
				вмм	бмм	вмм	бмм	
150	1 x 50-00223	1 x 50-00201	-	2108	315	-	-	
	1 x 50-00224	1 x 50-00204	-	-	-	2118	324	

код	описание					
50-00223	СНОВАНИЕ ДЫМОВОГО КОЛЛЕКТОРА Ø160 ИЗ ПП ДЛЯ R1K 50-60					
50-00201	ДОПОЛНИТЕЛЬНЫЙ ДЫМОВЫЙ КОЛЛЕКТОР Ø160 ИЗ ПП ДЛЯ R1K 75-100-115-120					
50-00224	ОСНОВАНИЕ ДЫМОВОГО КОЛЛЕКТОРА Ø200 ИЗ ПП ДЛЯ R1К 50-60					
50-00204	ДОПОЛНИТЕЛЬНЫЙ ДЫМОВЫЙ КОЛЛЕКТОР Ø200 ИЗ ПП ДЛЯ R1K 75-100-115-120					

НБ 50-00223 и 50-00224 комплектуются сифоном для отвода конденсата.

ДЫМОСБОРНИКИ - СИСТЕМА 175-200-250-275-300-375-400-450-500-600


СИСТЕМА модель	1	2	коллектор Ø160		коллектор Ø200		коллектор Ø250	
			ВММ	бмм	в мм	бмм	в мм	б мм
175	1 x 50-00211	1 x 50-00201	2110	317	-	-	-	-
200	1 x 50-00211	1 x 50-00201	2110	317	-	-	-	-
250	1 x 50-00211	1 x 50-00201	2110	317	-	-	-	-
275	1 x 50-00211	2 x 50-00201	2173	359	-	-	-	-
300	1 x 50-00211	2 x 50-00201	2173	359	-	-	-	-
350	1 x 50-00211	2 x 50-00201	2173	359	-	-	-	-
375	1 x 50-00211	3 x 50-00201			2215	421	-	-
400	1 x 50-00203	3 x 50-00204			2215	421	-	-
450	1 x 50-00382	4 x 50-00382					2240	446
500	1 x 50-00382	4 x 50-00383	-	-	-	-	2258	488
600	1 x 50-00382	4 x 50-00383	-	-	-	-	2258	488

код	описание
50-00211	ОСНОВАНИЕ ДЫМОВОГО КОЛЛЕКТОРА Ø160 ИЗ ПП ДЛЯ R1K 75-100-115-120
50-00201	ДОПОЛНИТЕЛЬНЫЙ ДЫМОВЫЙ КОЛЛЕКТОР Ø160 ИЗ ПП ДЛЯ R1K 75-100-115-120
50-00203	БАЗОВЫЙ ДЫМОВЫЙ КОЛЛЕКТОР Ø200 ИЗ ПП ДЛЯ R1K 75-100-115-120
50-00204	ДОПОЛНИТЕЛЬНЫЙ ДЫМОВЫЙ КОЛЛЕКТОР Ø200 ИЗ ПП ДЛЯ R1K 75-100-115-120
50-00382	БАЗОВЫЙ ДЫМОВЫЙ КОЛЛЕКТОР Ø250 ИЗ ПП ДЛЯ R1K 75-100-115-120
50-00383	ДОПОЛНИТЕЛЬНЫЙ ДЫМОВЫЙ КОЛЛЕКТОР Ø250 ИЗ ПП ДЛЯ R1K 75-100-115-120

НБ 50-00211, 50-00203 и 50-00383 комплектуются сифоном для отвода конденсата.

ДЫМОСБОРНИК - СИСТЕМА, состоящая из термогенераторов, установленных вплотную друг к другу.

СИСТЕМА модель	1	2 коллектор Ø		коллектор Ø160		Ø200	коллектор	Ø250
			вмм	бмм	в мм	бмм	в мм	бмм
175	2 x 50-00211	-	2067	273	-	-	-	-
200	2 x 50-00211	-	2088	273	-	-	-	-
250	2 x 50-00211	1 x 50-00201	2111	315	-	-	-	-
275	2 x 50-00203	2 x 50-00204	-	-	2131	337	-	-
300	2 x 50-00203	2 x 50-00204	-	-	2131	337	-	-
375	2 x 50-00203	2 x 50-00204	-	-	2131	337	-	-
400	2 x 50-00203	2 x 50-00204	-	-	2131	337	-	-
450	2 x 50-00203	2 x 50-00204	-	-	2131	337	-	-
500	2 x 50-00203	3 x 50-00204	-	-	2173	379	-	-
575	2 x 50-00203	4 x 50-00204	-	-	2173	379	-	-
600	2 x 50-00203	4 x 50-00204	-	-	2173	379	-	-
700	2 x 50-00203	5 x 50-00204	-	-		2240	2240	446
800	2 x 50-00382	6 x 50-00383	-	-		2240	2240	446
950	2 x 50-00382	6 x 50-00383	-	-		2240	2240	446

код	описание
50-00211	ОСНОВАНИЕ ДЫМОВОГО КОЛЛЕКТОРА Ø160 ИЗ ПП ДЛЯ R1K 75-100-115-120
50-00201	ДОПОЛНИТЕЛЬНЫЙ ДЫМОВЫЙ КОЛЛЕКТОР Ø160 ИЗ ПП ДЛЯ R1K 75-100-115-120
50-00203	БАЗОВЫЙ ДЫМОВЫЙ КОЛЛЕКТОР Ø200 ИЗ ПП ДЛЯ R1K 75-100-115-120
50-00204	ДОПОЛНИТЕЛЬНЫЙ ДЫМОВЫЙ КОЛЛЕКТОР Ø200 ИЗ ПП ДЛЯ R1K 75-100-115-120
50-00382	БАЗОВЫЙ ДЫМОВЫЙ КОЛЛЕКТОР Ø250 ИЗ ПП ДЛЯ R1K 75-100-115-120
50-00383	ДОПОЛНИТЕЛЬНЫЙ ДЫМОВЫЙ КОЛЛЕКТОР Ø250 ИЗ ПП ДЛЯ R1K 75-100-115-120

HБ 50-00201, 50-00203 и 50-00382 комплектуются сифоном для отвода конденсата.

КУРИТЕЛЬНЫЕ КОМПОНЕНТЫ

		P1K 50	P1K 60	P1K 75	100 рэндов	P1K 115	P1K 120
Прекс макс. доступный электрический вентилятор	Па	100	100	76 ₍₁₎ 100 ₍₂₎	100(2)	100(3)	100(4)
Прекс мин. доступный электрический вентилятор	Па	30	21,5	4 ₍₁₎ 30 ₍₂₎	30(2)	21,5(3)	21,5(4)

(1)Одиночный тепловой агрегат мощностью 25 кВт

₍₂₎Одиночный тепловой агрегат мощностью 50 кВт

(3)Тепловой агрегат 57 кВт

₍₄₎Тепловой агрегат 59 кВт

ОСНОВАНИЕ ДЫМОВОГО КОЛЛЕКТОРА ИЗ ПП ДЛЯ R1K 50-60

Ø160 - код. 50-00223

Ø200 - код 50-00224

Ø250 - код 50-00384

ОСНОВАНИЕ ДЫМОВОГО КОЛЛЕКТОРА ИЗ ПП ДЛЯ R1K 75-100-115-120

Ø160 - код. 50-00211

Ø200 - код 50-00203

Ø250 - код 50-00382

ДОПОЛНИТЕЛЬНЫЙ ДЫМОСБОР ИЗ ПП ДЛЯ R1K 50-60

Ø160 - код. 50-00191

Ø200 - код 50-00218

Ø250 - код 50-00385

ДОПОЛНИТЕЛЬНЫЙ ДЫМОВЫЙ КОЛЛЕКТОР ИЗ ПП ДЛЯ R1K 75-100-115-120

Ø160 - код 50-00201

Ø200 - код 50-00204

Ø250 - код 50-00383

КОЛЕНО 45° МГ ИЗ ПП

Ø160 - код. 50-00354

Ø200 - код 50-00228

Ø250 - код 50-00229

КОЛЕНО 90° МГ ИЗ ПП

Ø160 - код. 50-00331

Ø200 - код 50-00332

Ø250 - код 50-00333

ТРОЙНИК МЕ ИЗ ПП

Ø160 - код 50-00335

Ø200 - код 50-00336

Ø250 - код 50-00337

ФИТИНГ ДЛЯ СЛИВА КОНДЕНСАТА МҒ ИЗ ПП Ø250 - код. 50-00341

POWER-TECH SYSTEM - Модульный генератор

ЭКСЦЕНТРИЧЕСКИЙ ПЕРЕХОД ИЗ ПП Ø100/160 - код. 50-00338 Ø160/200 - код 50-00339 Ø200/250 - код 50-00340

РАСШИРЕНИЕ MF В ПП

Ø160 L = 500 мм - κ од. 50-00345

Ø160 L = 1000 мм - код. 50-00346

Ø160 L = 2000 мм - код. 50-00347

Ø200 L = 500 мм - код. 50-00348

Ø200 L=1000 мм - код 50-00349

Ø200 L=2000 мм - код 50-00350

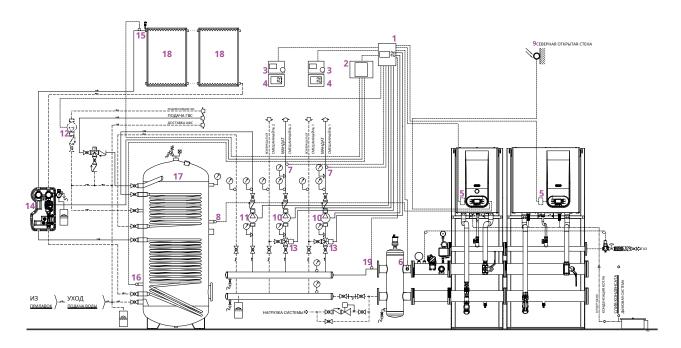
Ø250 L = 500 мм - код. 50-00351

Ø250 L = 1000 мм - код. 50-00352

Ø250 L = 2000 мм - κ од. 50-00353

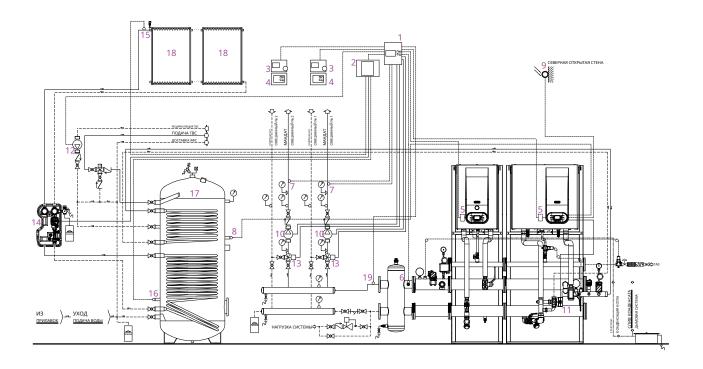
Примечания: Диаметры и типы предлагаемых систем дымоудаления являются ориентировочными. На этапе реализации система должна быть сформулирована на основе реальных потребностей предприятия/архитектуры, проверена и одобрена инженером-проектировщиком.

10. CENTRALINA DI REGOLAZIONE


La centralina è un regolatore climatico e gestore di caldaie in cascata a comando digitale. Permette la gestione di un generatore modulare composta da max. nº8 caldaie installate in cascata e la gestione integrata di un impianto termico composto essenzialmente da due impianti miscelati, un circuito per l'acqua calda sanitaria, il ricircolo ed il solare termico. Grazie all'utilizzo del ModBus per il collegamento delle caldaie e alla possibilità di collegare varie periferiche, il regolatore permette il controllo di tutte le funzioni con la possibilità di gestione in modulazione totale delle caldaie in funzione della potenza richiesta.

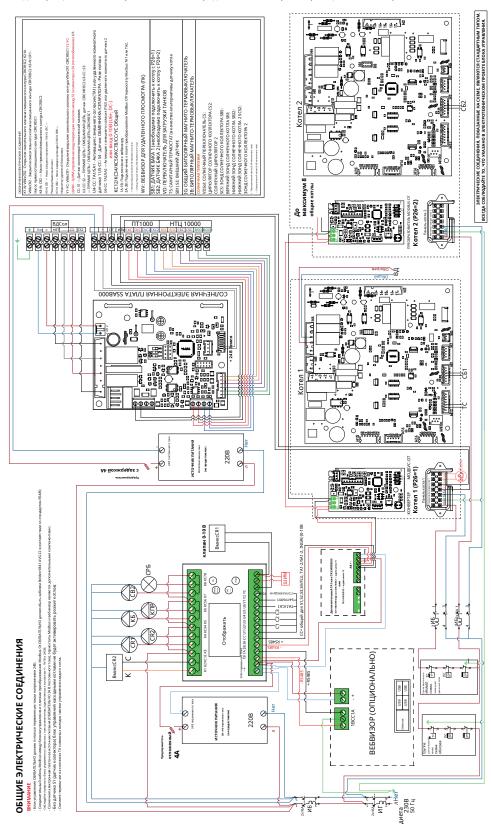
	cod. 40-00337	Centralina di controllo di sequenza e gestione impianto (master)
	cod. 65-00691	Scheda gestione solare termico (slave)
	cod. 65-00544	Scheda interfaccia OT/ModBus
	cod. 40-00344	Controllo ambiente
	cod. 73518LA	Sonda esterna
KKI	cod. 40-00355	Web Visor- Centralina gestione remota caldaie
-	cod. 40-00351	Cavo sonda collettore / miscelato
-	cod. 40-00346	Cavo sonda bollitore / bollitore solare SBS - SBI2
-	cod. 40-00347	Cavo sonda bollitore solare SBI
_	cod. 31409LA	Cavo sonda collettore solare SBS

11. МЕХАНИЧЕСКАЯ СХЕМА


Версия СИСТЕМА только с обогревом

Позиция	Описание	Код
1	БЛОК УПРАВЛЕНИЯ ПОСЛЕДОВАТЕЛЬНОСТЬЮ И СИСТЕМОЙ (МАСТЕР)	40-00337
2	СОЛНЕЧНАЯ КАРТА (РАБОЧАЯ)	65-00691
3	КОМНАТНЫЙ ТЕРМОСТАТ	-
4	КОМНАТНЫЙ КОНТРОЛЬ (КАК АЛЬТЕРНАТИВА КОМНАТНОМУ ТЕРМОСТАТУ)	40-00344
5	КОНВЕРТЕР СИГНАЛА OT/ModBus	65-00544
6	КАБЕЛЬ КОЛЛЕКТОРНОГО ЗОНДА	40-00351
7	СМЕШАННЫЙ КАБЕЛЬ ДАТЧИКА	40-00351
8	КАБЕЛЬ ДАТЧИКА БАКА	40-00346
9	внешний зонд	73518LA
10	ЦИРКУЛЯТОР СМЕШАННОГО КОНТУРА	-
11	ЦИРКУЛЯТОР ЗАГРУЗКИ КОТЛА	-
12	РЕЦИРКУЛЯЦИОННЫЙ ЦИРКУЛЯТОР	-
13	СМЕСИТЕЛЬНЫЙ КЛАПАН СМЕСИТЕЛЬНЫЙ КОНТУР	-
14	СОЛНЕЧНЫЙ ЦИРКУЛЯТОР	-
15	КАБЕЛЬ ЗОНДА СОЛНЕЧНОГО КОЛЛЕКТОРА SBS	31409ЛА
16	КАБЕЛЬ ЗОНДА СОЛНЕЧНОГО РЕЗЕРВУА SBI	40-00347
17	ЕМКОСТЬ ГВС	-
18	СОЛНЕЧНЫЙ КОЛЛЕКТОР	-
19	ЗОНД ОБМЕННИКА/СЕПАРАТОРА	40-00351

Версия RS SYSTEM с выносной системой питания котла



Позиция	Описание	Код
1	БЛОК УПРАВЛЕНИЯ ПОСЛЕДОВАТЕЛЬНОСТЬЮ И СИСТЕМОЙ (МАСТЕР)	40-00337
2	СОЛНЕЧНАЯ КАРТА (РАБОЧАЯ)	65-00691
3	КОМНАТНЫЙ ТЕРМОСТАТ	-
4	КОМНАТНЫЙ КОНТРОЛЬ (КАК АЛЬТЕРНАТИВА КОМНАТНОМУ ТЕРМОСТАТУ)	40-00344
5	КОНВЕРТЕР СИГНАЛА OT/ModBus	65-00544
6	КАБЕЛЬ КОЛЛЕКТОРНОГО ЗОНДА	40-00351
7	СМЕШАННЫЙ КАБЕЛЬ ДАТЧИКА	40-00351
8	КАБЕЛЬ ДАТЧИКА БАКА	40-00346
9	внешний зонд	73518LA
10	ЦИРКУЛЯТОР СМЕШАННОГО КОНТУРА	-
11	ДИСТАНЦИОННЫЙ ПЕРЕКЛЮЧАТЕЛЬ СИСТЕМЫ ПОДАЧИ КОТЛА	-
12	РЕЦИРКУЛЯЦИОННЫЙ ЦИРКУЛЯТОР	-
13	СМЕСИТЕЛЬНЫЙ КЛАПАН СМЕСИТЕЛЬНЫЙ КОНТУР	-
14	СОЛНЕЧНЫЙ ЦИРКУЛЯТОР	-
15	КАБЕЛЬ ЗОНДА СОЛНЕЧНОГО КОЛЛЕКТОРА SBS	31409ЛА
16	КАБЕЛЬ ЗОНДА СОЛНЕЧНОГО РЕЗЕРВУА SBI	40-00347
17	ЕМКОСТЬ ГВС	-
18	СОЛНЕЧНЫЙ КОЛЛЕКТОР	-
19	ЗОНД ОБМЕННИКА/СЕПАРАТОРА	40-00351

12. ЭЛЕКТРИЧЕСКАЯ СХЕМА

Приведенную ниже схему подключения следует рассматривать исключительно как информативную. Для электрических соединений различных каскадных систем всегда обращайтесь к электрической схеме, предоставленной проектировщиком/инженером-теплотехником.

13. ОПИСАНИЕ ХАРАКТЕРИСТИК

Группа термический модульный предварительно смешанный К конденсационный тип только для отоплениядля внутренней установки в составе индивидуальных конденсационных водогрейных теплогенераторов с низкими выбросами загрязняющих веществ типа B23-B23p-B33-B53-C13-C33-C43-C53-C63-C73-C83-C93, состоящих из встроенного теплообменника Combi- Tech® с однотрубными змеевиками из нержавеющей стали, микропламенной горелкой с модулируемым режимом работы и низким уровнем выбросов.

Характеристики теплогенератора.

СИСТЕМА 150

Кот.	ІІ2Н3В/П
кВт	150
кВт	5
кВт	147,56
кВт	4,83
кВт	160,20
кВт	5.29
кВт	26.12
%	98,37
%	97,90
%	96,51
%	106,80
%	105,70
%	102,80
%	108,80
Кафе	5
ИП	X5D
сорт	ТЫ
	кВт кВт кВт кВт кВт кВт кВт % % % % %

СИСТЕМА 175

	1	
Характеристики		
Устройство	Кот.	II2Н3В/П
Максимальная номинальная тепловая мощность	кВт	175
Минимальная номинальная тепловая мощность	кВт	3.7
Полезная тепловая мощность - 80/60°C.	кВт	171,20
Минимальная полезная тепловая мощность – 80/60°C.	кВт	3.50
Полезная тепловая мощность - 50/30°C.	кВт	186,15
Минимальная полезная тепловая мощность - 50/30°C.	кВт	3,83
Полезная мощность при 30% Pm - возврат 30°	кВт	29.83
КПД при 100% Pn - 80/60°C	%	97.10
Средний выход Pn - 80/60°C	%	97.30

КПД при минимальной мощности - 80/60°C	%	94,60
КПД при 100% Pn - 50/30°C	%	105,80
КПД при минимальной мощности - 50/30°C	%	104,60
КПД при 30% Pm - возврат 47°C	%	99.10
КПД при 30% Pm - возврат 30°C	%	107,50
Максимальное рабочее давление	Кафе	5
Степень электрической защиты	ИП	X5D
Низкие выбросы NOx	сорт	ТЫ

СИСТЕМА 200

Характеристики		
Устройство	Кот.	ІІ2Н3В/П
Максимальная номинальная тепловая мощность	кВт	200
Минимальная номинальная тепловая мощность	кВт	5
Полезная тепловая мощность - 80/60°C.	кВт	196,74
Минимальная полезная тепловая мощность – 80/60°C.	кВт	4,83
Полезная тепловая мощность - 50/30°C.	кВт	213,60
Минимальная полезная тепловая мощность - 50/30°C.	кВт	5.29
Полезная мощность при 30% Pm - возврат 30°	кВт	34,28
КПД при 100% Pn - 80/60°C	%	98,37
Средний выход Pn - 80/60°C	%	97,88
КПД при минимальной мощности - 80/60°C	%	96,51
КПД при 100% Pn - 50/30°C	%	106,80
КПД при минимальной мощности - 50/30°C	%	105,70
КПД при 30% Pm - возврат 47°C	%	102,80
КПД при 30% Pm - возврат 30°C	%	108,83
Максимальное рабочее давление	Кафе	5
Степень электрической защиты	ИП	X5D
Низкие выбросы NOx	сорт	ТЫ

СИСТЕМА 250

Кот.	II2Н3В/П
кВт	236,0
кВт	6.0
кВт	229,28
кВт	5,75
кВт	251,34
кВт	6.44
кВт	40.10
%	97,15
%	108.30
%	97.00
	кВт кВт кВт кВт кВт кВт кВт кВт %

POWER-TECH SYSTEM - Модульный генератор

КПД при 100% Pn - 50/30°C	%	106,50
КПД при минимальной мощности - 50/30°C	%	107.30
КПД при 30% Pm - возврат 47°C	%	102,70
КПД при 30% Pm - возврат 30°C	%	107,80
Максимальное рабочее давление	Кафе	5
Степень электрической защиты	ИП	X5D
Низкие выбросы NOx	сорт	ТЫ

СИСТЕМА 275

Характеристики		
Устройство	Кот.	ІІ2Н3В/П
Максимальная номинальная тепловая мощность	кВт	275,0
Минимальная номинальная тепловая мощность	кВт	3,70
Полезная тепловая мощность - 80/60°C.	кВт	269,57
Минимальная полезная тепловая мощность – 80/60°C.	кВт	3.50
Полезная тепловая мощность - 50/30°C.	кВт	292,95
Минимальная полезная тепловая мощность - 50/30°C.	кВт	3,83
Полезная мощность при 30% Pm - возврат 30°	кВт	46,97
КПД при 100% Pn - 80/60°C	%	97.10
Средний выход Pn - 80/60°C	%	97.30
КПД при минимальной мощности - 80/60°C	%	94,60
КПД при 100% Pn - 50/30°C	%	105,80
КПД при минимальной мощности - 50/30°C	%	104,60
КПД при 30% Pm - возврат 47°C	%	99.10
КПД при 30% Pm - возврат 30°C	%	107,50
Максимальное рабочее давление	Кафе	5
Степень электрической защиты	ИП	X5D
Низкие выбросы NOx	сорт	ТЫ

СИСТЕМА 300

Характеристики		
Устройство	Кот.	ІІ2Н3В/П
Максимальная номинальная тепловая мощность	кВт	300,0
Минимальная номинальная тепловая мощность	кВт	5.0
Полезная тепловая мощность - 80/60°C.	кВт	295.11
Минимальная полезная тепловая мощность – 80/60°C.	кВт	4,83
Полезная тепловая мощность - 50/30°C.	кВт	320,40
Минимальная полезная тепловая мощность - 50/30°C.	кВт	5.29
Полезная мощность при 30% Pm - возврат 30°	кВт	51,42
КПД при 100% Pn - 80/60°C	%	98,37
Средний выход Pn - 80/60°C	%	97,88
КПД при минимальной мощности - 80/60°C	%	96,51
КПД при 100% Pn - 50/30°C	%	106,80
КПД при минимальной мощности - 50/30°C	%	105,70
КПД при 30% Pm - возврат 47°C	%	102,80
КПД при 30% Pm - возврат 30°C	%	108,83

Максимальное рабочее давление	Кафе	5
Степень электрической защиты	ИП	X5D
Низкие выбросы NOx	сорт	ТЫ

СИСТЕМА 350

Характеристики		
Устройство	Кот.	ІІ2Н3В/П
Максимальная номинальная тепловая мощность	кВт	342,0
Минимальная номинальная тепловая мощность	кВт	6.0
Полезная тепловая мощность - 80/60°C.	кВт	332,07
Минимальная полезная тепловая мощность – 80/60°C.	кВт	5,77
Полезная тепловая мощность - 50/30°C.	кВт	364,23
Минимальная полезная тепловая мощность - 50/30°C.	кВт	6.44
Полезная мощность при 30% Pm - возврат 30°	кВт	58,47
КПД при 100% Pn - 80/60°C	%	97.10
Средний выход Pn - 80/60°C	%	97,80
КПД при минимальной мощности - 80/60°C	%	96.10
КПД при 100% Pn - 50/30°C	%	106,50
КПД при минимальной мощности - 50/30°C	%	107.30
КПД при 30% Pm - возврат 47°C	%	102,70
КПД при 30% Pm - возврат 30°C	%	108.30
Максимальное рабочее давление	Кафе	5
Степень электрической защиты	ИП	X5D
Низкие выбросы NOx	сорт	ТЫ

СИСТЕМА 400

Характеристики		
Устройство	Кот.	II2Н3В/П
Максимальная номинальная тепловая мощность	кВт	375,0
Минимальная номинальная тепловая мощность	кВт	3,70
Полезная тепловая мощность - 80/60°C.	кВт	367,94
Минимальная полезная тепловая мощность – 80/60°C.	кВт	3,5
Полезная тепловая мощность - 50/30°C.	кВт	399,75
Минимальная полезная тепловая мощность - 50/30°C.	кВт	3,83
Полезная мощность при 30% Pm - возврат 30°	кВт	64.11
КПД при 100% Pn - 80/60°C	%	97.10
Средний выход Pn - 80/60°C	%	97.30
КПД при минимальной мощности - 80/60°C	%	94,60
КПД при 100% Pn - 50/30°C	%	105,80
КПД при минимальной мощности - 50/30°C	%	104,60
КПД при 30% Pm - возврат 47°C	%	99.10
КПД при 30% Pm - возврат 30°C	%	107,50
Максимальное рабочее давление	Кафе	5
Степень электрической защиты	ИП	X5D
Низкие выбросы NOx	сорт	ТЫ

СИСТЕМА 450

Характеристики		
Устройство	Кот.	II2Н3В/П
Максимальная номинальная тепловая мощность	кВт	456,0
Минимальная номинальная тепловая мощность	кВт	6
Полезная тепловая мощность - 80/60°C.	кВт	442,76
Минимальная полезная тепловая мощность – 80/60°C.	кВт	5,77
Полезная тепловая мощность - 50/30°C.	кВт	485,64
Минимальная полезная тепловая мощность - 50/30°C.	кВт	6.44
Полезная мощность при 30% Pm - возврат 30°	кВт	77,96
КПД при 100% Pn - 80/60°C	%	97.10
Средний выход Pn - 80/60°C	%	97,80
КПД при минимальной мощности - 80/60°C	%	96.10
КПД при 100% Pn - 50/30°C	%	106,50
КПД при минимальной мощности - 50/30°C	%	107.30
КПД при 30% Pm - возврат 47°C	%	102,70
КПД при 30% Pm - возврат 30°C	%	108.30
Максимальное рабочее давление	Кафе	5
Степень электрической защиты	ИП	X5D
Низкие выбросы NOx	сорт	ТЫ

СИСТЕМА 500

V		
Характеристики		
Устройство	Кот.	II2Н3В/П
Максимальная номинальная тепловая мощность	кВт	500,0
Минимальная номинальная тепловая мощность	кВт	5.0
Полезная тепловая мощность - 80/60°C.	кВт	491,85
Минимальная полезная тепловая мощность – 80/60°C.	кВт	4,83
Полезная тепловая мощность - 50/30°C.	кВт	534,0
Минимальная полезная тепловая мощность - 50/30°C.	кВт	5.29
Полезная мощность при 30% Pm - возврат 30°	кВт	85,70
КПД при 100% Pn - 80/60°C	%	98,37
Средний выход Pn - 80/60°C	%	97,88
КПД при минимальной мощности - 80/60°C	%	96,51
КПД при 100% Pn - 50/30°C	%	106,80
КПД при минимальной мощности - 50/30°C	%	105,70
КПД при 30% Pm - возврат 47°C	%	102,80
КПД при 30% Pm - возврат 30°C	%	108,83
Максимальное рабочее давление	Кафе	5
Степень электрической защиты	ИП	X5D
Низкие выбросы NOx	сорт	ТЫ

СИСТЕМА 600

Характеристики		
Устройство	Кот.	ІІ2Н3В/П
Максимальная номинальная тепловая мощность	кВт	600,0

Минимальная номинальная тепловая мощность	кВт	6.0
Полезная тепловая мощность - 80/60°C.	кВт	573,2
Минимальная полезная тепловая мощность – 80/60°C.	кВт	5,75
Полезная тепловая мощность - 50/30°C.	кВт	628,35
Минимальная полезная тепловая мощность - 50/30°C.	кВт	6.44
Полезная мощность при 30% Pm - возврат 30°	кВт	100,25
КПД при 100% Pn - 80/60°C	%	97,15
Средний выход Pn - 80/60°C	%	108.30
КПД при минимальной мощности - 80/60°C	%	97.00
КПД при 100% Pn - 50/30°C	%	106,50
КПД при минимальной мощности - 50/30°C	%	107.30
КПД при 30% Pm - возврат 47°C	%	102,70
КПД при 30% Pm - возврат 30°C	%	107,80
Максимальное рабочее давление	Кафе	5
Степень электрической защиты	ИП	X5D
Низкие выбросы NOx	сорт	ТЫ

В соответствии:

- Газовая директива 2009/142/ЕС.
- Директива по низковольтному оборудованию 2006/95/EC
- Директива по электромагнитной совместимости 2004/108/EC.
- Директива по эффективности 92/42/ЕЕС 4 звезды
- директива 2009/125/ЕС (Егр)
- сертификация СЕ

Теплогенератор по существу состоит из:

- встроенный теплообменник Combi-Tech®, произведенный и запатентованный компанией Radiant, с высокой эффективностью нагрева с коэффициентом модуляции 1/10, теплообменниками большого сечения с нагревательной одинарной трубкой из нержавеющей стали AISI 304 L, горелкой с высокой степенью смешивания в комплекте с электродами зажигания, зондовым контролем ионизации и дымоудалением. обратный клапан;
- газовый клапан двухзатворный пневматического типа;
- панель управления, оснащенная микропроцессорной электронной платой с постоянной модуляцией пламени с ПИД-регулированием: отсрочка старта в фазе нагрева, защита от замерзания, функция постциркуляции контура отопления, функция антиблокировки циркулятора из-за неактивности, система самодиагностики с цифровым индикатором температуры, управление последовательностью в случае котла с двумя тепловыми агрегатами, ШИМуправление электронным циркуляционным насосом с контролем Dt°, функция трубочиста, система регулирования температуры для систем под полом;
- контур отвода конденсата в комплекте с сифоном и гибким сливным шлангом;
- модулирующий электронный электровентилятор с высокой степенью электронного регулирования скорости;
- высокоэффективный электронный циркуляционный насос ErP с
 ШИМ-управлением и встроенным воздухоотделителем;
- герметичная камера из листовой стали

запросу).

• устройство опорожнения системы;

Системы управления и безопасности

- самодиагностика правильности функционирования систем управления;
- контроль температуры с помощью датчиков NTC;
- постциркуляция насоса в функции трехходового шарового крана, обратного клапана, коллектора отопления; стальной газоснабжение с фланцевыми соединениями
- Сертифицированное СЕ реле минимального давления контроля нехватки воды с блокировкой котла в случае низкого давления (калибровка: 0,5 бар);
- ограничительный предохранительный термостат от перегрева вододымо- теплообменника;
- антиблокировочная система насоса;
- проверяемый предохранительный клапан на тепловом контуре, откалиброванный на давление 3 бар;
- устройство тотальной защиты от замерзания;
- датчик безопасности от перегрева дыма;

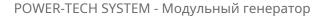
Аксессуары

Гидравлический коллектор возврата/возврата в комплекте с блоком безопасности INAIL, в основном состоящим из изолированные горизонтальные стальные гидравлические коллекторы возврата/возврата с фланцевыми соединениями DN 65/100 - PN6 в комплекте с группой безопасности, регулирования и управления, одобренной INAIL, состоящей из 1 реле давления с блокировкой с ручным сбросом, включая колодец, 1 реле минимального давления с ручным сбросом, включая колодец, утвержденный блок-термостат с ручным сбросом № 1, включая колодец, колодец № 1 смотровой колодец, с вертикальной осью, внутренним диаметром не менее 10 мм, для применения предохранительного термометра для контроля температуры, № 1 трех- проходной кран манометра с дополнительным фланцевым соединением в комплекте с манометром № 1 с подходящим диаметром полной шкалы 80 мм х 3/8 дюйма, термометром № 1 с полной шкалой 120 °C диаметром 80 мм x 3/8 дюйма, безопасность, одобренная INAIL клапан откалиброван на 3 бар (по запросу).

Коллектор гидравлический дополнительный поездка туда и обратно состоит по существу изгоризонтальные изолированные стальные гидравлические коллекторы подачи/обратки с фланцевыми соединениями DN 65/100 - PN6 в комплекте с соединениями Ø1"1/2 для термомодуля, сливным краном с держателем шланга, обратными соединениями, термомодулями, состоящими из жестких изолированных медных труб, шаровыми клапанами, фильтр, кран шаровой трехходовой, обратный клапан, коллектор подачи газа стальной с фланцевыми соединениями Ду 40 - PN6 в комплекте с патрубком подключения к термомодулю, газовым запорным краном, окраска желтая;

Дополнительный гидравлический коллектор для дистанционного питания котла (версия RS) в комплекте с блоком безопасности INAIL, в основном состоящий из:

горизонтальные изолированные стальные гидравлические коллекторы подачи/обратки с фланцевыми соединениями DN 65/100 - PN6 в комплекте с соединениями Ø1″1/2 для термомодуля, сливным краном с держателем шланга, обратными соединениями, термомодулями, состоящими из жестких изолированных медных труб, шаровыми клапанами, фильтр,


стальной газоснабжение с фланцевыми соединениями DN 40 -PN6 в комплекте с патрубком для подключения к термомодулю, запорным газовым краном, желтой окраски, выносным коллектором нагнетания котлоагрегата Ø1"1/2, трехходовым клапаном, кабелем датчика котла, групповой безопасностью, регулирование и контроль, одобренные INAIL, в состав входят: № 1 блочного реле давления с ручным сбросом, включая колодец, № 1 реле минимального давления с ручным сбросом, включая колодец, № 1 блочного термостата с одобренным ручным сбросом, включая колодец, № 1.1 смотровой колодец, с вертикальной осью, внутренним диаметром не менее 10 мм, для установки термометра контроля температуры, 1 трехходовой кран манометра с дополнительным фланцевым соединением в комплекте с 1 манометром с подходящим полный диаметр шкалы 80 мм x 3/8 дюйма, термометр № 1 с температурой 120 °C, полный диаметр шкалы 80 мм x 3/8 дюйма, одобренный INAIL предохранительный клапан, откалиброванный на 3 бар (по

Дополнительный гидравлический коллектор возврата/обратки для установки «спина к спине», по существу состоящий из изолированные горизонтальные стальные обратные/подающие коллекторы с фланцевыми соединениями DN100 - PN6 в комплекте с соединениями Ø1"1/2 для двойного термомодуля, сливным краном с держателем шланга, обратными соединениями для тепловых модулей, состоящими из жестких изолированных медных труб, шаровыми кранами, секционирующим клапаном, фильтром, трехходовой шаровой кран, обратный клапан, двойной стальной коллектор подачи газа с фланцевыми соединениями DN 40 - PN6 в комплекте с патрубком для подключения к термомодулю, газовый запорный кран, окраска желтая:

Предохранительный клапандиафрагма, фиксированная калибровка 3 бар. Корпус и колпачок из латуни СW617N. Номинальное давление: PN10. Избыточное давление: 10%. Закрытие отходов: 20%. Диапазон температур - 10: 120°C. Соединения FF с повышенной мощностью. Соединения Ø1/2"-3/4"-1".

Самонесущий каркасдля установки теплогенератора и гидроаккумулятора из оцинкованного листового металла в комплекте с кронштейнами для размещения гидрораспределителей, предназначенных для установки каскадных генераторов в линию и/или с встречным решением;

Гидравлический сепараторфланцевый Ø150 в составе стального гидросепаратора Ø150 с фланцевыми соединениями DN 65 - PN6, колодцами для держателей зондов, сливным краном с держателем шланга, воздухоотводчиком Jolly;

Гидравлический сепараторфланцевый Ø200 в составе стального гидросепаратора Ø200 с фланцевыми соединениями DN 100 - PN6, колодцами для держателей зондов, сливным краном с держателем шланга, воздухоотводчиком Jolly;

Гидравлический сепараторфланцевый Ø300 в составе стального гидросепаратора Ø300 с фланцевыми соединениями DN 100 - PN6, колодцами для держателей зондов, сливным краном с держателем шланга, воздухоотводчиком Jolly;

Субгоризонтальный коллектор дымовых газовиз полипропилена DN 160-200-250 в основном состоит из горизонтального коллектора DN 160-200-250 из полипропилена PP, одобренного UN EN 1443 и UNI EN 14471, крышки для слива конденсата, дымоходной арматуры DN 80 из полипропилена PP, воздухозаборной решетки;

Система нейтрализации конденсатав комплекте с фурнитурой для подключения конденсатоотводчика как к теплогенератору, так и к системе дымоудаления, состоящей из короба-нейтрализатора конденсата, угольной трубкиконтейнера, решетчатого дна, проставки и фильтровальной ткани, активированного угля, мраморного гранулята;

Контроллер климата/последовательностис внешним датчиком для плавного регулирования температуры подаваемой воды в систему со следующими функциями: вращение в последовательности включения отдельных термомодулей, плавное регулирование температуры подаваемой воды, каскадное управление до 8 базовых модулей, ежечасно программирование, еженедельное отопление, контуры ГВС и рециркуляции, одновременное управление пятью внешними контурами: 2 смешанных контура, солнечный тепловой контур, контур ГВС и контур рециркуляции, система управления антилегионеллой, климатическая компенсация и/или дистанционное управление помещением, дистанционное управление система дистанционного управления модульным генератором и системой;

ООО Радиант-ГРУПП Республика Беларусь, Минская область, г. Смолевичи ул.Первомайская1Б тел.+375 44 7535108 WhatsApp +7 (919) 047-71-62 WhatsApp radiant-group@mail.ru www.radiant-boilers.ru